大神代码:https://blog.csdn.net/Snoopy_Yuan/article/details/69223240
昨天画不出树有点烦躁,随便找了百度了一点点,还是画不出来。
今天这道题,其实就是把信息增益换成基尼指数,本质上的构造树逻辑是一致的。
不过源代码有个小错误,在上面链接里已经评论了,好奇宝宝可以自己去看
不过,奇葩的是前后剪枝算出来的准确率一毛一样,估计程序里还有问题,以后再扣吧。。。
主程序gini_decision_tree.py
#https://blog.csdn.net/Snoopy_Yuan/article/details/69223240
import pandas as pd
#data_file_encode="gb18030" #gb18030支持汉字和少数民族字符,是一二四字节变长编码。这么用的时候with open需要增加encoding参数,但会报错gb18030不能解码
# with open相当于打开文件,保存成str对象,如果出错则关闭文件。参数r表示只读
with open("/Users/huatong/PycharmProjects/Data/watermelon_33.csv",mode="r") as data_file:
df=pd.read_csv(data_file)
import decision_tree
# 取出训练集,iloc是根据数字索引取出对应行的信息,drop是删除这些行之后剩余的表格
index_train = [0, 1, 2, 5, 6, 9, 13, 14, 15, 16] #和书上80页的训练样本相同
df_train = df.iloc[index_train]
df_test = df.drop(index_train)
# generate a full tree
root = decision_tree.TreeGenerate(df_train)
#decision_tree.DrawPNG(root, "decision_tree_full.png") 画不出来 先注释掉
print("accuracy of full tree: %.3f" % decision_tree.PredictAccuracy(root, df_test))
# 预剪枝
root = decision_tree.PrePurn(df_train, df_test)
#decision_tree.DrawPNG(root, "decision_tree_pre.png")
print("accuracy of pre-purning tree: %.3f" % decision_tree.PredictAccuracy(root, df_test))
# 后剪枝,先生成树,再从底部节点开始分析
root = decision_tree.TreeGenerate(df_train)
decision_tree.PostPurn(root, df_test)
#decision_tree.DrawPNG(root, "decision_tree_post.png")
print("accuracy of post-purning tree: %.3f" % decision_tree.PredictAccuracy(root, df_test))
# 5折交叉分析
accuracy_scores = []
n = len(df.index)
k = 5
for i in range(k):
m = int(n / k)
test = []
for j in range(i * m, i * m + m):
test.append(j)
df_train = df.drop(test)
df_test = df.iloc[test]
root = decision_tree.TreeGenerate(df_train) # generate the tree
decision_tree.PostPurn(root, df_test) # post-purning
# test the accuracy
pred_true = 0
for i in df_test.index:
label = decision_tree.Predict(root, df[df.index == i])
if label == df_test[df_test.columns[-1]][i]:
pred_true += 1
accuracy = pred_true / len(df_test.index)
accuracy_scores.append(accuracy)
# print the prediction accuracy result
accuracy_sum = 0
print("accuracy: ", end="")
for i in range(k):
print("%.3f " % accuracy_scores[i], end="")
accuracy_sum += accuracy_scores[i]
print("\naverage accuracy: %.3f" % (accuracy_sum / k))
decision_tree.py
#被主程序执行treeGenerate时候调用,def用于定义函数
#节点类,包含①当前节点的属性,例如纹理清晰? ②节点所属分类,只对叶子节点有效 ③向下划分的属性取值例如色泽乌黑青绿浅白
class Node(object): #新式类
def __init__(self,attr_init=None,label_init=None,attr_down_init={}): #注意类的特殊函数前后有两个下划线
self.attr=attr_init
self.label=label_init
self.attr_down=attr_down_init
#主函数,输入参数为数据集,输出参数为决策树根节点Node
def TreeGenerate(df):
new_node=Node(None,None,{})
label_arr=df[df.columns[-1]] #好瓜这列数值,df.columns[-1]是最后一列
label_count=NodeLabel(label_arr)
if label_count: #类别统计结果不为空
new_node.label=max(label_count,key=label_count.get) #取类别数目最多的类,get是返回键值
#如果样本全属于同一类别则直接返回叶节点,或如果样本属性集A为空则返回叶节点并标记类别为类别数最多的类,但如果样本属性取值相同怎么处理?
if len(label_count)==1 or len(label_arr)==0:
return new_node
#根据基尼指数选择最优划分属性
new_node.attr,div_value=OptAttr_Gini(df)
#如果属性值为空,删除当前属性再递归
if div_value==0:
value_count=ValueCount(df[new_node.attr])
for value in value_count:
df_v=df[df[new_node.attr].isin([value])]
dv_v=df_v.drop(new_node.attr,1)
new_node.attr_down[value]=TreeGenerate(df_v)
else:
value_l="<=%.3f"%div_value
value_r=">%.3f"%div_value
df_v_l=df[df[new_node.attr]<=div_value] #左孩子
df_v_r=df[df[new_node.attr]>div_value] #右孩子
new_node.attr_down[value_l] = TreeGenerate(df_v_l) #继续分
new_node.attr_down[value_r] = TreeGenerate(df_v_r)
return new_node
#统计样本包含的类别和每个分类的个数,输入参数是分类标签序列,输出序列中包含的类别和各类别总数
def NodeLabel(label_arr):
label_count={}
for label in label_arr:
if label in label_count: label_count[label]+=1
else:label_count[label]=1
return label_count
#寻找最优划分属性,输入参数为数据集,输出参数为属性opt_attr和划分取值div_value,div_value对离散变量取值为0,对连续变量取实际值
def OptAttr_Gini(df):
gini_index=float('Inf')
for attr_id in df.columns[1:-1]:
gini_index_tmp,div_value_tmp=GiniIndex(df,attr_id)
if gini_index_tmp a0: # need branching
for value in value_count:
df_v = df_train[df_train[new_node.attr].isin([value])] # get sub set
df_v = df_v.drop(new_node.attr, 1)
new_node.attr_down[value] = TreeGenerate(df_v)
else:
new_node.attr = None
new_node.attr_down = {}
else: # continuous variable # left and right child
value_l = "<=%.3f" % div_value
value_r = ">%.3f" % div_value
df_v_l = df_train[df_train[new_node.attr] <= div_value] # get sub set
df_v_r = df_train[df_train[new_node.attr] > div_value]
# for child node
new_node_l = Node(None, None, {})
new_node_r = Node(None, None, {})
label_count_l = NodeLabel(df_v_l[df_v_r.columns[-1]])
label_count_r = NodeLabel(df_v_r[df_v_r.columns[-1]])
new_node_l.label = max(label_count_l, key=label_count_l.get)
new_node_r.label = max(label_count_r, key=label_count_r.get)
new_node.attr_down[value_l] = new_node_l
new_node.attr_down[value_r] = new_node_r
# calculating to check whether need further branching
a1 = PredictAccuracy(new_node, df_test)
if a1 > a0: # need branching
new_node.attr_down[value_l] = TreeGenerate(df_v_l)
new_node.attr_down[value_r] = TreeGenerate(df_v_r)
else:
new_node.attr = None
new_node.attr_down = {}
return new_node
#后剪枝
def PostPurn(root, df_test):
'''
pre-purning to generating a decision tree
@param root: Node, root of the tree
@param df_test: dataframe, the testing set for purning decision
@return accuracy score through traversal the tree
'''
# leaf node
if root.attr == None:
return PredictAccuracy(root, df_test)
# calculating the test accuracy on children node
a1 = 0
value_count = ValueCount(df_test[root.attr])
for value in list(value_count):
df_test_v = df_test[df_test[root.attr].isin([value])] # get sub set
if value in root.attr_down: # root has the value
a1_v = PostPurn(root.attr_down[value], df_test_v)
else: # root doesn't have value
a1_v = PredictAccuracy(root, df_test_v)
if a1_v == -1: # -1 means no pruning back from this child
return -1
else:
a1 += a1_v * len(df_test_v.index) / len(df_test.index)
# calculating the test accuracy on this node
node = Node(None, root.label, {})
a0 = PredictAccuracy(node, df_test)
# check if need pruning
if a0 >= a1:
root.attr = None
root.attr_down = {}
return a0
else:
return -1
def DrawPNG(root, out_file):
import graphviz
'''
visualization of decision tree from root.
@param root: Node, the root node for tree.
@param out_file: str, name and path of output file
'''
try:
from pydotplus import graphviz
except ImportError:
print("module pydotplus.graphviz not found")
g = graphviz.Dot() # generation of new dot
TreeToGraph(0, g, root)
g2 = graphviz.graph_from_dot_data(g.to_string())
g2.write_png(out_file)
def TreeToGraph(i, g, root):
'''
build a graph from root on
@param i: node number in this tree
@param g: pydotplus.graphviz.Dot() object
@param root: the root node
@return i: node number after modified
# @return g: pydotplus.graphviz.Dot() object after modified
@return g_node: the current root node in graphviz
'''
try:
from pydotplus import graphviz #pydotplus和graphviz都要安装
except ImportError:
print("module pydotplus.graphviz not found")
if root.attr == None:
g_node_label = "Node:%d\n好瓜:%s" % (i, root.label)
else:
g_node_label = "Node:%d\n好瓜:%s\n属性:%s" % (i, root.label, root.attr)
g_node = i
g.add_node(graphviz.Node(g_node, label=g_node_label))
for value in list(root.attr_down):
i, g_child = TreeToGraph(i + 1, g, root.attr_down[value])
g.add_edge(graphviz.Edge(g_node, g_child, label=value))
return i, g_node