LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法,全称是 local response normalization--局部响应标准化。这个函数很少使用,基本上被类似DROPOUT这样的方法取代,具体原理还是值得一看的
函数原型
def lrn(input, depth_radius=None, bias=None, alpha=None, beta=None,
name=None):
官方文档给的解释如下,这些官方文档看了没啥卵用,越看越糊涂
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
见最早的出处AlexNet论文对它的定义, 《ImageNet Classification with Deep ConvolutionalNeural Networks》
i:代表下标,你要计算像素值的下标,从0计算起
j:平方累加索引,代表从j~i的像素值平方求和
x,y:像素的位置,公式中用不到
a:代表feature map里面的 i 对应像素的具体值
N:每个feature map里面最内层向量的列数
k:超参数,由原型中的bias指定
α:超参数,由原型中的alpha指定
n/2:超参数,由原型中的deepth_radius指定
β:超参数,由原型中的belta指定
看一个栗子,理解上诉的参数,进而理解rln函数
import tensorflow as tf
a = tf.constant([
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[8.0, 7.0, 6.0, 5.0],
[4.0, 3.0, 2.0, 1.0]],
[[4.0, 3.0, 2.0, 1.0],
[8.0, 7.0, 6.0, 5.0],
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0]]
])
#reshape 1批次 2x2x8的feature map
a = tf.reshape(a, [1, 2, 2, 8])
normal_a=tf.nn.lrn(a,2,0,1,1)
with tf.Session() as sess:
print("feature map:")
image = sess.run(a)
print (image)
print("normalized feature map:")
normal = sess.run(normal_a)
print (normal)
你将得到输出:
feature map:
[[[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 8. 7. 6. 5. 4. 3. 2. 1.]]
[[ 4. 3. 2. 1. 8. 7. 6. 5.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]]]
normalized feature map:
[[[[ 0.07142857 0.06666667 0.05454545 0.04444445 0.03703704 0.03157895
0.04022989 0.05369128]
[ 0.05369128 0.04022989 0.03157895 0.03703704 0.04444445 0.05454545
0.06666667 0.07142857]]
[[ 0.13793103 0.10000001 0.0212766 0.00787402 0.05194805 0.04
0.03448276 0.04545454]
[ 0.07142857 0.06666667 0.05454545 0.04444445 0.03703704 0.03157895
0.04022989 0.05369128]]]]
分析如下:
由调用 lrn(a,2,0,1,1)得出 n/2=2,k=0,α=1,β=1,N=8
第一行第一个数来说:i = 0
a = 1,min(N-1, i+n/2) = min(7, 2)=2,j = max(0, i - n/2)=max(0, 0)=0,下标从0~2个数平方求和, b=1/(1^2 + 2^2 + 3^2)=1/14 = 0.071428571
同理,第一行第四个数来说:i = 3
a = 4,min(N-1, i+n/2) = min(7, 5 )=5, j = max(0,1) = 1,下标从1~5进行平方求和,b = 4/(2^2 + 3^2 + 4^2 + 5^2 + 6^2) = 4/90=0.044444444
再来一个,第二行第一个数来说: i = 0
a = 8, min(N-1, i+n/2) = min(7, 2) = 2, j=max(0,0)=0, 下标从0~2的3个数平方求和,b = 8/(8^2 + 7^2 + 6^2)=8/149=0.053691275
其他的也是类似操作
参考文献
【TensorFlow】tf.nn.local_response_normalization详解,lrn正则法如何计算?
TensorFlow之深入理解AlexNet
Tensorflow的LRN是怎么做的
ImageNet Classification with Deep ConvolutionalNeural Networks