卡方分布

1. 定义:

n个相互独立的随机变量ξ₁,ξ₂,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和

构成一新的随机变,其分布规律称为卡方分布(chi-square distribution),记作:

卡方分布有一个参数称为自由度,正如正态分布中均值方差不同就是另一个正态分布一样,自由度不同就是另一个卡方分布。记为:


其中为限制条件数。

卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时, 卡方分布近似为正态分布。

卡方分布_第1张图片

上图中Γ( )代表Gamma 函数。


2. 为什么要引入卡方分布?

以特定概率分布为某种情况建模时,事物长期结果较为稳定,能够清晰进行把握。但是期望与事实存在差异怎么办?偏差是正常的小幅度波动?还是建模错误?此时,利用卡方分布分析结果,排除可疑结果。【事实与期望不符合情况下使用卡方分布进行检验】

关于卡方分布的更多应用介绍,可参见:

http://www.cnblogs.com/baiboy/p/tjx11.html














你可能感兴趣的:(机器学习)