字典方法,时间复杂度O(N) + O(1)
def maxf(x):
a = dict()
max = 0
for i in x:
tem = str(i)
a[tem] = a.get(tem,0) + 1
if max < a[tem]:
max = a[tem]
return max
时间复杂度O(log2(N))
def find(a,b):
min = 0
max = len(a)-1
if b in a:
while True:
centre = int((max + min)/2)
if a[centre] > b:
max = centre - 1
elif a[centre] < b:
min = centre + 1
elif a[centre] == b:
return centre
break
else:
return('b in not in a')
时间复杂度O(N)
a = input()
b = ''
for i in range(len(a)):
if a[i] == ' ':
b = b + 'X'
elif a[i] != ' ':
b = b + a[i]
print(b)
时间复杂度O(N)
def fbnq(x):
a = 0
b = 1
c = 0
for i in range(x-1):
c = a + b
a = b
b = c
return c
递归(慢):
def fbnq(x):
if x == 0:
return 0
elif x == 1:
return 1
elif:
return fbnq(x-1) + fbnq(x-2)
时间复杂度O(log2(N))
旋转数组如[1,2,3,4,5] --> [4,5,1,2,3]。二分法思想,通过比较数值不断折半搜索空间
def sortt(a,d):
low = 0 high = len(x) - 1 while True:
mid = int((low + high) / 2)
if a[low] < a[mid]:
if a[low] <= d < a[mid]:
high = mid - 1 elif d == a[mid]:
return mid
break else:
low = mid + 1 elif a[low] == a[mid]:
if a[low] == d:
return low
break else:
low = mid
elif a[low] > a[mid]:
if a[mid] < d <= a[high]:
low = mid
elif d == a[mid]:
return mid
break else:
high = mid - 1 return mid
时间复杂度O(a*b)
a*b矩阵,当a和b每位数之和sum((12,34),sum = 1+2+3+4)<=k时允许进入该格子,统计能够进入的格子个数
def counts(a,b,k):
a = int(a)
b = int(b)
k = int(k)
if k <= 0 or a <= 0 or b <= 0:
return 0 else:
count = 0 for x in range(1,a):
for y in range(1,b):
sum1, sum2, sum = 0, 0, 0 while x > 0:
c1 = x % 10 sum1 = sum1 + c1
x = int(x / 10)
while y > 0:
c2 = y % 10 sum2 = sum2 + c2
y = int(y / 10)
sum = sum1 + sum2
if (sum <= k):
count = count + 1 return count
一根长度为n的绳子,剪成m段,n,m >1且为整数,求子段长度最大乘积。贪婪算法
def maxproduct(x):
if x < 2:
return 0 elif x == 2:
return 1 elif x == 3:
return 2 elif x == 4:
return 4 elif x >=5:
count = int(x/3)
rest = x%3 if rest == 1:
return (3**(count-1))*4 else:
return (3**count)*rest
时间复杂度O(log26(N))
EXCEL中,A表示第一列,AA表示低27列,根据输入字表输出是第几列
shuru = input()
tem = []
for i in range(len(shuru)):
tem1 = shuru[i]
tem2 = ord(tem1) - ord('A') + 1 tem.append(tem2)
sum = 0 tem.reverse()
for j in range(len(tem)):
d = tem[j]*(26**j)
sum = sum + d
print(sum)
9.二进制中1的个数
时间复杂度(log2(N))
a = input()
a = int(a)
count = 0 while a>0:
if a%2 == 1:
count = count + 1 a = int(a/2) (可以换成a = a>>1,此时效率更高)
print(count)
10. 一条语句判断一个整数是不是2的整数次方
一个整数如果是2的次方则二进制只有一位为1,因此如果是2的整数次方返回0
a & (a-1)
11.输入两个整数m,n,判断二进制最少改变多少位能得m->n
先求异或,再统计异或结果1的个数
12.字符串解压缩
如输入 a = '3[ab]acc',则输出'abababacc'
def Ddezip(a):
tem1 = '' tem2 = '' results = '' for i in range(len(a)):
if a[i].isdigit():
tem1 = tem1 + a[i]
elif a[i].isalpha():
tem2 = tem2 + a[i]
elif a[i] == '[':
tem2 = '' elif a[i] == ']':
tem1 = int(tem1)
for j in range(tem1):
results = results + tem2
tem1 = '' tem2 = '' if i<len(a)-1 and a[i+1].isalpha():
for k in range(i+1,len(a)):
if a[k].isalpha():
results = results + a[k]
else:
break return results
13.寻找所有可能子集合
输入[1,2,3],输出[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]
def FindSubset(lists):
if len(lists) == 0:
return [[]]
subsets = []
first_elt = lists[0]
rest_list = lists[1:]
for partial_sebset in FindSubset(rest_list):
subsets.append(partial_sebset)
next_subset = partial_sebset[:] + [first_elt]
subsets.append(next_subset)
return subsets
14. 字符串的排列
输入'abc',输出['abc', 'acb', 'bac', 'bca', 'cab', 'cba']。
def bianli(x):
if len(x) <= 1:
return x
else:
results = []
for i in range(len(x)):
for j in bianli(x[0:i]+x[i+1:]):
results.append(x[i]+j)
return results
15.顺时针打印长宽相等的矩阵
时间复杂度O(N*N)
a = [1,2,3,4] x = [] for i in range(4): x.append(a) l = len(x) c = [] if l/2 ==0: tem = l/2 elif l/2 !=0: tem = int(l/2)+1 for i in range(tem): for j in range(i,l-i): c.append(x[i][j]) tem1 = j for k in range(i+1,l-i): c.append(x[k][tem1]) tem2 = k for m in range(i,l-i-1)[::-1]: c.append(x[tem2][m]) tem3 = m for n in range(i+1,l-i-1)[::-1]: c.append(x[n][tem3]) print(c)
16.找到数组中出现次数超过一半的数字
[1]:建立临时变量存储数字和当前频次,时间复杂度log(N)
a = input().split() b = [int(i) for i in a] result = [b[0],1] for i in range(1,len(b)): if result[0] == b[i]: result[1] = result[1] + 1 elif result[0] != b[i]: result [1] = result[1] - 1 if result[1] <= 0: result[0] = b[i] result[1] = 1 print(result[0])
[2]:堆排序建堆一波,叶子节点对应值,时间复杂度log(N)(限制,3个数时就要考虑小顶堆还是大顶堆合适)(注:建堆时间复杂度log(N),调堆时间复杂度log2(N)):
def adjust_heap(x,i,size): l = i*2 + 1 r = i*2 + 2 key = i if r < len(x): if x[l] > x[key]: key = l if x[r] > x[key]: key = r if key != i: x[i],x[key] = x[key],x[i] adjust_heap(x,key,size) def result(x): size = len(x) for i in range(0,int(size/2))[::-1]: adjust_heap(x,i,size) return x[int(size/2)]
17.数组中连续子数组最大和
初始设置sum为0,遍历数组往后加,遇到加之后小于0情况sum清零并且result记录sum上次大于0的值。
时间复杂度O(N)
a = input().split() b = [int(i) for i in a] sum,result = 0,0 for i in range(len(b)): if sum + b[i] <= 0: result = sum sum = 0 else: sum = sum + b[i] if result > sum: print(result) else: print(sum)
18。数字序列某一位数字
数字以123456789101112...格式序列化到一个字符序列中,求任意n位对应的数字,13位对应1
思想:前9位长度9,前99位长度2*(99-9)+9,前999位长度3*(999-99)+99
a = input() b = int(a) if b <=9: print(n) p = 9 lenn = 2 L = 9 i = 99 while(L10 + 9 lenn = lenn+1 result = int((b-tem)/lenn1)+p1 if int((b-tem)%lenn1) == 0: result = result%10 else: chang = (b-tem)%lenn1 tem1 = list(str(result+1)) result = tem1[chang-1] print(int(result))
19.找出数组中和为s的任意两数字
时间复杂度O(n*log2(n)+n)
# 堆排序或快排对a排序,时间复杂度O(N*log2(N)) def find(a,x): l= 0 r = len(a)-1 while(l < r): if a[l]+a[r] > x: r = r - 1 if a[l]+a[r] < x: l = l + 1 if a[l]+a[r] == x: return a[l],a[r] break