kafka + sparkStreaming 学习笔记

Kafka

kafka是一个高吞吐的分布式消息队列系统。特点是生产者消费者模式,先进先出(FIFO)保证顺序,自己不丢数据,默认每隔7天清理数据。消息列队常见场景:系统之间解耦合、峰值压力缓冲、异步通信。
kafka + sparkStreaming 学习笔记_第1张图片

  • producer : 消息生产者

  • consumer : 消息消费之

  • broker : kafka集群的server,负责处理消息读、写请求,存储消息,在kafka cluster这一层这里,其实里面是有很多个broker

  • topic : 消息队列/分类相当于队列,里面有生产者和消费者模型

  • zookeeper : 元数据信息存在zookeeper中,包括:存储消费偏移量,topic话题信息,partition信息

  • 1、一个topic分成多个partition

  • 2、每个partition内部消息强有序, 其中的每个消息都有一个序号交offset

  • 3、一个partition 只对应一个broker, 一个broker 可以管理多个partition

  • 4、 消息直接写入文件,并不保存在内存中

  • 5、按照时间策略, 默认一周删除, 而不是消息消费完就删除

  • 6、producer自己决定网那个partition写消息,可以是轮询的负载均衡,或者是基于hash的partition策略

kafka + sparkStreaming 学习笔记_第2张图片

kafka 的消息消费模型

  • consumer 自己维护消费到哪个offset
  • 每个consumer都有对应的group
  • group 内是queue消费模型
    – 各个consumer消费不同的partition
    – 一个消息在group内只消费一次
  • 各个group各自独立消费,互不影响
    kafka + sparkStreaming 学习笔记_第3张图片

kafka 特点

  • 生存者消费模型:FIFO; partition内部是FIFO的, partition之间不是FIFO
  • 高性能:单节点支持上千个客户端,百MB/s 吞吐
  • 持久性:直接持久在普通的磁盘上,性能比较好; 直接append 方式追加到磁盘,数据不会丢
  • 分布式:数据副本冗余,流量负载均衡、可扩展; 数据副本,也就是同一份数据可以到不同的broker上面去,也就是当一份数据, 磁盘坏掉,数据不亏丢失
  • 很灵活: 消息长时间持久化+Cilent维护消费状态; 1、持久花时间长,可以是一周、一天,2、可以自定义消息偏移量

kafka 安装

  1. https://www.apache.org/dyn/closer.cgi?path=/kafka/2.0.1/kafka_2.11-2.0.1.tgz
    下载
  2. 解压压缩包,修改config 文件夹下 server.properties
   	 // 节点编号:(不同节点按0,1,2,3整数来配置)
    	broker.id = 0
    	// 数据存放目录
    	log.dirs = /log
    	// zookeeper 集群配置
    	zookeeper.connect=node1:2181,node2:2181,node3:2181
  1. 启动 bin/kafka-server-start.sh config/server.properties

    可以单独配置一个启动文件
    vim start-kafka.sh

    nohup bin/kafka-server-start.sh   config/server.properties > kafka.log 2>&1 &
    

授权 chmod 755 start-kafka.sh

kafka基础命令
创建topic./kafka-topics.sh --zookeeper node1:2181,node2:2181,node3:2181 --create --topic t0315 --partitions 3 --replication-factor 3

查看topic: ./kafka-topics.sh --zookeeper node1:2181,node2:2181,node3:2181 --list

生产者:./kafka-console-producer.sh --topic t0315 --broker-list node1:9092,node2:9092,node3:9092

消费者:./kafka-console-consumer.sh --bootstrap-server node1:9092,node2:9092,node3:9092 --topic t0315

获取描述: ./kafka-topics.sh --describe --zookeeper node1:2181,node2:2181,node3:2181 --topic t0315

kafka中有一个被称为优先副本(preferred replicas)的概念。如果一个分区有3个副本,且这3个副本的优先级别分别为0,1,2,根据优先副本的概念,0会作为leader 。当0节点的broker挂掉时,会启动1这个节点broker当做leader。当0节点的broker再次启动后,会自动恢复为此partition的leader。不会导致负载不均衡和资源浪费,这就是leader的均衡机制。
在配置文件conf/ server.properties中配置开启(默认就是开启):auto.leader.rebalance.enable true

Code 部分

sparkStreaming 的direact 方式


   2.2.0
 

    junit
    junit
    4.11
    test
  
  
    org.apache.spark
    spark-streaming-kafka-0-8_2.11
    ${spark.version}
   
  

  
    org.apache.spark
    spark-streaming_2.11
    ${spark.version}
  
  
  
    org.apache.spark
    spark-core_2.11
    ${spark.version}
  
  
  
    org.apache.spark
    spark-hive_2.11
    ${spark.version}
  
  
  
    org.apache.spark
    spark-sql_2.11
    ${spark.version}
  

producer 部分:

import kafka.serializer.StringEncoder;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;

/** *@Author PL *@Date 2018/12/27 10:59 *@Description TODO **/
public class KafkaProducer {
    public static void main(String[] args) throws InterruptedException {

        Properties pro = new Properties();
        pro.put("bootstrap.servers","node1:9092,node2:9092,node3:9092");
        pro.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        pro.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
        //Producer producer = new Producer(new ProducerConfig(pro));
        //org.apache.kafka.clients.producer.KafkaProducer producer1 = new Kafka
        org.apache.kafka.clients.producer.KafkaProducer<String,String> producer = new org.apache.kafka.clients.producer.KafkaProducer<String, String>(pro);
        System.out.println("11");
        String topic = "t0315";
        String msg = "hello word";
        for (int i =0 ;i <100;i++) {
            producer.send(new ProducerRecord<String, String>(topic, "hello", msg));
            System.out.println(msg);
        }
        producer.close();
    }
}

customer

import kafka.serializer.StringDecoder;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;

import java.util.*;

/** *@Author PL *@Date 2018/12/26 13:28 *@Description TODO **/
public class SparkStreamingForkafka {
    public static void main(String[] args) throws InterruptedException {
        SparkConf sc = new SparkConf().setMaster("local[2]").setAppName("test");
        JavaStreamingContext jsc = new JavaStreamingContext(sc, Durations.seconds(5));
        Map<String,String> kafkaParam = new HashMap<>();
        kafkaParam.put("metadata.broker.list","node1:9092,node2:9092,node3:9092");
        //kafkaParam.put("t0315",1);
        HashSet<String> topic = new HashSet<>();
        topic.add("t0315");

        //JavaPairInputDStream line = KafkaUtils.createStream(jsc,"node1:9092,node2:9092,node3:9092","wordcountGrop",kafkaParam);
        JavaPairInputDStream<String, String> line = KafkaUtils.createDirectStream(jsc, String.class, String.class, StringDecoder.class, StringDecoder.class, kafkaParam, topic);
        JavaDStream<String> flatLine = line.flatMap(new FlatMapFunction<Tuple2<String, String>, String>() {
            @Override
            public Iterator<String> call(Tuple2<String, String> tuple2) throws Exception {
                return Arrays.asList(tuple2._2.split(" ")).iterator();
            }
        });

        JavaPairDStream<String, Integer> pair = flatLine.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairDStream<String, Integer> count = pair.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });

        count.print();

        jsc.start();
        jsc.awaitTermination();
        jsc.close();;
    }
}

上述方式为一个SparkStreaming 的消费者, direct方式就是把kafka当成一个存储数据的库,spark 自己维护offset。假设,driver 端宕机了, 之后再重启,会从offset 那一部分开始取?
所以我们需要将kafka 的offset 保存在文件中, 宕机之后在启动时去恢复文件中的offset 读取数据。

import kafka.serializer.StringDecoder;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function0;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;

import java.util.*;

/** *@Author PL *@Date 2018/12/26 13:28 *@Description TODO **/
public class KafkaCheckPoint {
    public static void main(String[] args) throws InterruptedException {
        final String checkPoint = "./checkPoint";

        Function0<JavaStreamingContext> scFunction = new Function0<JavaStreamingContext>() {
            @Override
            public JavaStreamingContext call() throws Exception {
                return createJavaStreamingContext();
            }
        };
        // 如果存在checkport 就恢复数据,不存在就直接运行
        JavaStreamingContext jsc = JavaStreamingContext.getOrCreate(checkPoint, scFunction);
        jsc.start();
        jsc.awaitTermination();
        jsc.close();;
    }


    public static  JavaStreamingContext createJavaStreamingContext(){
        System.out.println("初始化");  // 第一次会执行,宕机之后重启执行数据恢复时不执行
        final SparkConf sc = new SparkConf().setMaster("local").setAppName("test");
        JavaStreamingContext jsc = new JavaStreamingContext(sc, Durations.seconds(5));
        /** * checkpoint 保存 * 1、 配置信息 * 2、Dstream 执行逻辑 * 3、Job 的执行进度 * 4、offset */
        jsc.checkpoint("./checkPoint");

        Map<String,String> kafkaParam = new HashMap<>();
        kafkaParam.put("metadata.broker.list","node1:9092,node2:9092,node3:9092");
        HashSet<String> topic = new HashSet<>();
        topic.add("t0315");

        JavaPairInputDStream<String, String> line = KafkaUtils.createDirectStream(jsc, String.class, String.class, StringDecoder.class, StringDecoder.class, kafkaParam, topic);
        JavaDStream<String> flatLine = line.flatMap(new FlatMapFunction<Tuple2<String, String>, String>() {
            @Override
            public Iterator<String> call(Tuple2<String, String> tuple2) throws Exception {
                return Arrays.asList(tuple2._2.split(" ")).iterator();
            }
        });

        JavaPairDStream<String, Integer> pair = flatLine.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairDStream<String, Integer> count = pair.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });
        count.print();
        return jsc;
    }

}

这次我们启动的时候会发现先从checkpoint中恢复数据, 从上次宕机的数据开始读取并执行。但是,当我们更改功能时,发现新修改的部分没有执行, 还是执行的上次保存的代码。。。。。。。

这时候可以把offset 保存至zookeeper中

主方法

import com.pl.data.offset.getoffset.GetTopicOffsetFromKafkaBroker;
import com.pl.data.offset.getoffset.GetTopicOffsetFromZookeeper;
import kafka.common.TopicAndPartition;
import org.apache.log4j.Logger;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import java.util.Map;

public class UseZookeeperManageOffset {
	/** * 使用log4j打印日志,“UseZookeeper.class” 设置日志的产生类 */
	static final Logger logger = Logger.getLogger(UseZookeeperManageOffset.class);
	
	
	public static void main(String[] args) throws InterruptedException {
		
		/** * 从kafka集群中得到topic每个分区中生产消息的最大偏移量位置 */
		Map<TopicAndPartition, Long> topicOffsets = GetTopicOffsetFromKafkaBroker.getTopicOffsets("node1:9092,node2:9092,node3:9092", "t0315");
		
		/** * 从zookeeper中获取当前topic每个分区 consumer 消费的offset位置 */
		Map<TopicAndPartition, Long> consumerOffsets = 
				GetTopicOffsetFromZookeeper.getConsumerOffsets("node1:2181,node2:2181,node3:2181","pl","t0315");
		
		/** * 合并以上得到的两个offset , * 思路是: * 如果zookeeper中读取到consumer的消费者偏移量,那么就zookeeper中当前的offset为准。 * 否则,如果在zookeeper中读取不到当前消费者组消费当前topic的offset,就是当前消费者组第一次消费当前的topic, * offset设置为topic中消息的最大位置。 */

		if(null!=consumerOffsets && consumerOffsets.size()>0){
            topicOffsets.putAll(consumerOffsets);
        }
		/** * 如果将下面的代码解开,是将topicOffset 中当前topic对应的每个partition中消费的消息设置为0,就是从头开始。 */
		/*for(Map.Entry item:topicOffsets.entrySet()){ item.setValue(0l); }*/
		
		/** * 构建SparkStreaming程序,从当前的offset消费消息 */
		JavaStreamingContext jsc = SparkStreamingDirect.getStreamingContext(topicOffsets,"pl");
		jsc.start();
		jsc.awaitTermination();
		jsc.close();
		
	}
}

获取kafka中当前的offset 偏移量(kafka API)

import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.Broker;
import kafka.common.TopicAndPartition;
import kafka.javaapi.OffsetRequest;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.consumer.SimpleConsumer;

/** * 测试之前需要启动kafka * @author root * */
public class GetTopicOffsetFromKafkaBroker {
	public static void main(String[] args) {
		
		Map<TopicAndPartition, Long> topicOffsets = getTopicOffsets("node1:9092,node2:9092,node3:9092", "t0315");
		Set<Entry<TopicAndPartition, Long>> entrySet = topicOffsets.entrySet();
		for(Entry<TopicAndPartition, Long> entry : entrySet) {
			TopicAndPartition topicAndPartition = entry.getKey();
			Long offset = entry.getValue();
			String topic = topicAndPartition.topic();
			int partition = topicAndPartition.partition();
			System.out.println("topic = "+topic+",partition = "+partition+",offset = "+offset);
		}
	
	}
	
	/** * 从kafka集群中得到当前topic,生产者在每个分区中生产消息的偏移量位置 * @param KafkaBrokerServer * @param topic * @return */
	public static Map<TopicAndPartition,Long> getTopicOffsets(String KafkaBrokerServer, String topic){
		Map<TopicAndPartition,Long> retVals = new HashMap<TopicAndPartition,Long>();
		// 遍历kafka集群,并拆分
		for(String broker:KafkaBrokerServer.split(",")){
			SimpleConsumer simpleConsumer = new SimpleConsumer(broker.split(":")[0],Integer.valueOf(broker.split(":")[1]), 64*10000,1024,"consumer"); 
			TopicMetadataRequest topicMetadataRequest = new TopicMetadataRequest(Arrays.asList(topic));
			TopicMetadataResponse topicMetadataResponse = simpleConsumer.send(topicMetadataRequest);
			List<TopicMetadata> topicMetadataList = topicMetadataResponse.topicsMetadata();
			// 遍历每个topic下的元数据
			for (TopicMetadata metadata : topicMetadataList) {
				// 遍历元数据下的分区
				for (PartitionMetadata part : metadata.partitionsMetadata()) {
					Broker leader = part.leader();
					if (leader != null) { 
						TopicAndPartition topicAndPartition = new TopicAndPartition(topic, part.partitionId()); 
						
						PartitionOffsetRequestInfo partitionOffsetRequestInfo = new PartitionOffsetRequestInfo(kafka.api.OffsetRequest.LatestTime(), 10000); 
						OffsetRequest offsetRequest = new OffsetRequest(ImmutableMap.of(topicAndPartition, partitionOffsetRequestInfo), kafka.api.OffsetRequest.CurrentVersion(), simpleConsumer.clientId()); 
						OffsetResponse offsetResponse = simpleConsumer.getOffsetsBefore(offsetRequest); 
						
						if (!offsetResponse.hasError()) { 
							long[] offsets = offsetResponse.offsets(topic, part.partitionId()); 
							retVals.put(topicAndPartition, offsets[0]);
						}
					}
				}
			}
			simpleConsumer.close();
		}
		return retVals;
	}
}

获取zookeeper中上次的消费的offset

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.retry.RetryUntilElapsed;

import com.fasterxml.jackson.databind.ObjectMapper;

import kafka.common.TopicAndPartition;

public class GetTopicOffsetFromZookeeper {
   
   public static Map<TopicAndPartition,Long> getConsumerOffsets(String zkServers,String groupID, String topic) { 
   	Map<TopicAndPartition,Long> retVals = new HashMap<TopicAndPartition,Long>();
   	// 连接 zookeeper
   	ObjectMapper objectMapper = new ObjectMapper();
   	CuratorFramework  curatorFramework = CuratorFrameworkFactory.builder()
   			.connectString(zkServers).connectionTimeoutMs(1000)
   			.sessionTimeoutMs(10000).retryPolicy(new RetryUntilElapsed(1000, 1000)).build();
   	curatorFramework.start();
   	
   	try{
   		String nodePath = "/consumers/"+groupID+"/offsets/" + topic;
   		if(curatorFramework.checkExists().forPath(nodePath)!=null){
   			List<String> partitions=curatorFramework.getChildren().forPath(nodePath);
   			for(String partiton:partitions){
   				int partitionL=Integer.valueOf(partiton);
   				Long offset=objectMapper.readValue(curatorFramework.getData().forPath(nodePath+"/"+partiton),Long.class);
   				TopicAndPartition topicAndPartition=new TopicAndPartition(topic,partitionL);
   				retVals.put(topicAndPartition, offset);
   			}
   		}
   	}catch(Exception e){
   		e.printStackTrace();
   	}
   	curatorFramework.close();
   	
   	return retVals;
   } 
   
   
   public static void main(String[] args) {
   	Map<TopicAndPartition, Long> consumerOffsets = getConsumerOffsets("node1:2181,node2:2181,node3:2181","pl","t0315");
   	Set<Entry<TopicAndPartition, Long>> entrySet = consumerOffsets.entrySet();
   	for(Entry<TopicAndPartition, Long> entry : entrySet) {
   		TopicAndPartition topicAndPartition = entry.getKey();
   		String topic = topicAndPartition.topic();
   		int partition = topicAndPartition.partition();
   		Long offset = entry.getValue();
   		System.out.println("topic = "+topic+",partition = "+partition+",offset = "+offset);
   	}
   }
}

读取kafka中指定offset开始的消息

import com.fasterxml.jackson.databind.ObjectMapper;
import kafka.common.TopicAndPartition;
import kafka.message.MessageAndMetadata;
import kafka.serializer.StringDecoder;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.retry.RetryUntilElapsed;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.HasOffsetRanges;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.streaming.kafka.OffsetRange;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.atomic.AtomicReference;

public class SparkStreamingDirect {
	public static JavaStreamingContext getStreamingContext(Map<TopicAndPartition, Long> topicOffsets,final String groupID){
		SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("SparkStreamingOnKafkaDirect");
		conf.set("spark.streaming.kafka.maxRatePerPartition", "10");
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
// jsc.checkpoint("/checkpoint");
        Map<String, String> kafkaParams = new HashMap<String, String>();
        kafkaParams.put("metadata.broker.list","node1:9092,node2:9092,node3:9092");
// kafkaParams.put("group.id","MyFirstConsumerGroup");
        for(Map.Entry<TopicAndPartition,Long> entry:topicOffsets.entrySet()){
    		System.out.println(entry.getKey().topic()+"\t"+entry.getKey().partition()+"\t"+entry.getValue());
        }

        JavaInputDStream<String> message = KafkaUtils.createDirectStream(
			jsc,
	        String.class,
	        String.class, 
	        StringDecoder.class,
	        StringDecoder.class, 
	        String.class,
	        kafkaParams,
	        topicOffsets, 
	        new Function<MessageAndMetadata<String,String>,String>() {
				private static final long serialVersionUID = 1L;
				public String call(MessageAndMetadata<String, String> v1)throws Exception {
	                return v1.message();
	            }
	        }
		);
        final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<>();
        JavaDStream<String> lines = message.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {
			private static final long serialVersionUID = 1L;
			@Override
            public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {
              OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
              offsetRanges.set(offsets);
              return rdd;
            }
          }
        );
        message.foreachRDD(new VoidFunction<JavaRDD<String>>(){
            /** * */
			private static final long serialVersionUID = 1L;

			@Override
            public void call(JavaRDD<String> t) throws Exception {
                ObjectMapper objectMapper = new ObjectMapper();
                CuratorFramework  curatorFramework = CuratorFrameworkFactory.builder()
                        .connectString("node1:2181,node2:2181,node3:2181").connectionTimeoutMs(1000)
                        .sessionTimeoutMs(10000).retryPolicy(new RetryUntilElapsed(1000, 1000)).build();
                curatorFramework.start();
                for (OffsetRange offsetRange : offsetRanges.get()) {
                	long fromOffset = offsetRange.fromOffset();
                	long untilOffset = offsetRange.untilOffset();
                	final byte[] offsetBytes = objectMapper.writeValueAsBytes(offsetRange.untilOffset());
                    String nodePath = "/consumers/"+groupID+"/offsets/" + offsetRange.topic()+ "/" + offsetRange.partition();
                    System.out.println("nodePath = "+nodePath);
                    System.out.println("fromOffset = "+fromOffset+",untilOffset="+untilOffset);
                    if(curatorFramework.checkExists().forPath(nodePath)!=null){
                        curatorFramework.setData().forPath(nodePath,offsetBytes);
                    }else{
                        curatorFramework.create().creatingParentsIfNeeded().forPath(nodePath, offsetBytes);
                    }
                }
                curatorFramework.close();
            }

        });
        lines.print();
        return jsc;
    }
}

你可能感兴趣的:(大数据)