- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- AI Agent架构解析与工业级项目实战指南:核心框架与模块化实现
心跃程序
人工智能架构
AIAgent架构解析与工业级项目实战指南:核心框架与模块化实现近年来,AIAgent技术凭借其灵活的任务处理架构和多场景扩展能力,逐渐成为人工智能领域的技术焦点。本文基于主流框架源码与工业级项目实践,深度解析Agent系统的设计原理及实现路径,为开发者提供可落地的技术方案参考。技术体系与实战模块本内容涵盖从基础架构到高阶优化的全流程实现,适用于具备Python和机器学习基础的开发者:1.Agen
- Rust 机器学习
KENYCHEN奉孝
Rustrust机器学习开发语言
Rust机器学习Rust机器学习与深度学习现状Rust在机器学习(ML)和深度学习(DL)领域的生态仍处于早期阶段,但因其高性能、内存安全和并发优势,逐渐吸引开发者探索。以下从工具链、库和实际应用方向展开。机器学习(ML)笔记以下是关于机器学习(MachineLearning,ML)的详细学习集,涵盖核心概念、方法、工具和学习路径:机器学习基础概念机器学习是人工智能的子领域,通过算法让计算机从数据
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- Java机器学习全攻略:从基础原理到实战案例详解
cyc&阿灿
java机器学习开发语言
在当今AI驱动的技术浪潮中,机器学习已成为Java开发者必须掌握的核心技能之一。本文将系统性地介绍Java机器学习的原理基础、常用框架,并通过多个实战案例展示如何在实际项目中应用这些技术。无论你是刚接触机器学习的Java开发者,还是希望巩固基础的中级工程师,这篇文章都将为你提供全面而实用的指导。一、机器学习基础与Java生态1.1机器学习基本概念机器学习是人工智能的一个分支,它通过算法使计算机系统
- 机器学习基础相关问题
真的没有脑袋
算法面经汇总机器学习人工智能面试计算机视觉算法
机器学习相关的基础问题K-means是否一定会收敛K-means是否一定会收敛K-means算法在有限步数内一定会收敛,但收敛到的可能是局部最优解而非全局最优解。以下是详细分析:K-means的优化目标是最小化样本到其所归属簇中心的距离平方和(SSE,SumofSquaredErrors)。因此,每一次迭代都单调减小(或保持不变)损失函数,而SSE有下界(不能为负数),所以一定会收敛。在实际实现中
- 【机器学习基础】机器学习入门核心:Jaccard相似度 (Jaccard Index) 和 Pearson相似度 (Pearson Correlation)
白熊188
机器学习基础机器学习人工智能
机器学习入门核心:Jaccard相似度(JaccardIndex)和Pearson相似度(PearsonCorrelation)一、算法逻辑Jaccard相似度(JaccardIndex)**Pearson相似度(PearsonCorrelation)**二、算法原理与数学推导1.Jaccard相似度公式2.Pearson相似度公式三、模型评估中的角色相似度度量的评估重点在推荐系统中的评估四、应用
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- 亚远景-AI 快速入门与ML-SPICE标准引入课程
亚远景aspice
人工智能
本课程为AI快速入门与ML-SPICE标准引入,用1天时间深度解锁汽车行业「ML-SPICE标准框架+工具链+合规要求」三位一体落地路径,助您跨越从理论认知到产线部署的鸿沟。课程内容:模块1:AI战略与基础1.AI驱动的商业价值机器学习在汽车/制造行业的核心应用场景企业AI转型的3大关键成功要素2.ML机器学习基础核心概念:监督学习/无监督学习/强化学习模型架构概览:CNN、Transformer
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- NLP学习路线(自用)
�猫薄荷武士�
自然语言处理学习人工智能
NLP学习路线规划(从基础到科研)你的目标是申请NUSNLP方向的PhD,所以NLP学习路线不仅要涵盖基础知识,还要逐步深入到前沿技术、论文阅读、实验复现和科研能力提升。这里我给你一个完整的学习路径,帮助你高效构建NLP知识体系,并逐步积累科研能力。学习路线总览阶段1(基础)-计算机科学&机器学习基础阶段2(核心)-传统NLP技术&深度学习NLP阶段3(进阶)-Transformer&预训练模型(
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- 机器学习--特征工程具体案例
lucky_lyovo
机器学习人工智能
一、数据集介绍sklearn库中的玩具数据集,葡萄酒数据集。在前两次发布的内容《机器学习基础中》有介绍。1.1葡萄酒列标签名:wine.feature_names结果:['alcohol','malic_acid','ash','alcalinity_of_ash','magnesium','total_phenols','flavanoids','nonflavanoid_phenols','p
- 26备战秋招day17——机器学习基础
如意鼠
26秋招机器学习人工智能
机器学习入门指南:常见算法详解与代码实现机器学习(MachineLearning,ML)是人工智能(AI)的一个重要分支,旨在通过数据驱动的方法让计算机系统自动学习和改进。对于刚接触机器学习的朋友来说,了解各种算法的基本原理及其实现方法至关重要。本篇文章将通俗易懂地介绍几种常见的机器学习算法,解释其背后的数学原理,并提供简单的代码示例,帮助你更好地理解这些算法的工作机制。目录什么是机器学习?监督学
- 机器学习基础概念详解:从入门到应用
烂蜻蜓
机器学习人工智能python深度学习
在机器学习领域,掌握基础概念是理解复杂模型和应用场景的关键。本文将以简洁的方式介绍机器学习的核心概念,帮助读者快速构建知识框架。一、数据集的划分:训练集、验证集与测试集1.训练集(TrainingSet)用途:用于模型训练,通过调整模型参数学习数据规律特点:通常占数据总量的60-70%示例:用历史房价数据训练模型预测未来价格2.验证集(ValidationSet)核心作用:模型调优与超参数选择应用
- 【机器学习基础】鸢尾花的分类 - 机器学习领域的Hello World
维他命C++
机器学习基础机器学习分类人工智能
1项目简介【背景】假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣。她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米。她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于setosa、versicolor或virginica三个品种之一。对于这些测量数据,她可以确定每朵鸢尾花所属的品种。【目标】构建一个机器学习模型,可以从上述已知品
- 机器学习基础算法11-鸢尾花数据集分析-PCA主成分分析与logistic回归(管道分析)
qq_42749341
机器学习-基础知识
目录数据集介绍PCA主成分分析1.基本原理2.代码实现逻辑回归-管道-Pipeline代码模型泛化能力分析数据集介绍鸢尾花数据集有三个类别,每个类别有50个样本。其中一个类别与另外两个线性可分,另外两个不能线性可分。PCA主成分分析1.基本原理在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为
- 机器学习实操 第一部分 机器学习基础 第6章 决策树
odoo中国
人工智能机器学习决策树人工智能
机器学习实操第一部分机器学习基础第6章决策树内容概要第6章深入介绍了决策树,这是一种功能强大的机器学习算法,能够处理分类、回归以及多输出任务。决策树通过递归地分割数据集来构建模型,具有易于解释和可视化的特点。本章详细讲解了决策树的训练算法、正则化方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用决策树解决实际问题。主要内容决策树的训练与可视化构建决策树:使用CART算法训练
- 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
odoo中国
人工智能机器学习支持向量机人工智能
机器学习实操第一部分机器学习基础第5章支持向量机(SVM)内容概要第5章深入介绍了支持向量机(SVM),这是一种功能强大且应用广泛的机器学习模型。SVM适用于线性或非线性分类、回归以及noveltydetection。本章详细讲解了SVM的核心概念、训练方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用SVM解决实际问题。主要内容线性SVM分类硬间隔分类:在数据线性可分的情
- 深度学习-学习笔记 DAY-1 (机器学习基础-案例学习)
gzj123。。
深度学习
本系列的学习笔记基础为李宏毅老师的《深度学习教程》,希望可以和大家一起共攀深度学习的大山,本教程干货满满,希望和我一起探索深度学习的宝子们收藏起来吧!!!案例:以视频的点击次数预测为例介绍下机器学习的运作过程。假设有人想要通过视频平台赚钱,他会在意频道有没有流量,这样他才会知道他的获利。假设后台可以看到很多相关的信息,比如:每天点赞的人数、订阅人数、观看次数。根据一个频道过往所有的信息可以预测明天
- 机器学习基础理论 - 偏差 vs 方差,欠拟合 vs 过拟合
yousuotu
面试题机器学习人工智能
定义记在训练集D上学得的模型为f(x;D)模型的期望预测为$$\hat{f}(x)=E_D[f(x;D)]$$偏差(Bias)$$bias^2(x)=(\hat{f}(x)-y)^2$$偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;方差(Variance)$$var(x)=E_D[(f(x;D)-\hat{f}(x))^2]$$方差度量了同样大小的训练集的变动所
- 机器学习基础理论 - 分类问题评估指标
yousuotu
面试题机器学习算法人工智能
几个定义:混淆矩阵TP:TruePositives,表示实际为正例且被分类器判定为正例的样本数FP:FalsePositives,表示实际为负例且被分类器判定为正例的样本数FN:FalseNegatives,表示实际为正例但被分类器判定为负例的样本数TN:TrueNegatives,表示实际为负例且被分类器判定为负例的样本数一个小技巧,第一个字母表示划分正确与否,T表示判定正确(判定正确),F表示
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【人工智能机器学习基础篇】——深入详解监督学习之模型评估:掌握评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术
猿享天开
人工智能数学基础专讲人工智能机器学习深度学习
深入详解监督学习之模型评估在监督学习中,模型评估是衡量模型性能的关键步骤。有效的模型评估不仅能帮助我们理解模型在训练数据上的表现,更重要的是评估其在未见数据上的泛化能力。本文将深入探讨监督学习中的模型评估方法,重点介绍评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术,并通过示例代码帮助读者更好地理解和应用这些概念。目录模型评估的重要性评估指标详解准确率(Accuracy)精确率(Pre
- 2023-2024山东大学机器学习期末回忆
Walk Me Home
机器学习人工智能
1、考试时间:2024/6/122、考试形式:闭卷3、考试科目:机器学习基础(老师:XuXinShun)一、名词解释1、聚类2、集成学习3、回归4、维度灾难5、主动学习二、简答题1、非参数估计相比参数估计有什么优点。说出两种非参数估计的方法,并解释他们的基本思想。2、梯度下降法的过程,并解释为什么每一步目标函数的值每次都是降低3、解释什么是过拟合,并给出解决过拟合的几种方法4、简述决策树算法的过程
- 山东大学软件学院2023-2024二学期机器学习基础考试题回忆版
卑微小亮°
机器学习
一名词解释聚类集成学习回归维度灾难主动学习二简答题1非参数估计比着有参数估计的优点?阐述两个非参数估计的基本思想2阐述梯度下降的主要过程?证明为什么梯度下降每次目标函数值都会减小3什么是过拟合?有什么减少过拟合的方法?4阐述决策树的基本思想,说明ID3的实现过程三综合分析题1用w和b表示svm的初始式子2从最小化结构风险的角度阐述为什么要最大化margin3写出引入拉格朗日乘子后svm的对偶形式的
- 从基础概念到前沿应用了解机器学习
AI大模型团团
机器学习人工智能aillama线性回归随机森林python
一、机器学习基础概念1.机器学习定义与核心价值机器学习是人工智能的重要分支,通过算法让计算机系统能够从数据中自动学习并改进性能。其核心价值在于:自动化决策:无需显式编程即可完成复杂任务持续进化:随着数据积累不断优化表现模式发现:从海量数据中识别人类难以察觉的规律2.三大学习范式对比学习类型数据需求算法示例典型应用场景监督学习标注数据SVM、随机森林垃圾邮件过滤、房价预测无监督学习无标注数据K-me
- 机器学习KNN算法
zhglhy
机器学习算法人工智能
K-最近邻算法(KNN)——机器学习基础K-最近邻算法(K-NearestNeighbors,KNN)是一种简单而强大的监督学习算法,可用于分类和回归任务。它的核心思想是:相似的数据点往往具有相似的输出值。1.KNN的核心原理KNN是一种基于实例的学习(Instance-BasedLearning),也称为惰性学习(LazyLearning),因为它不会在训练阶段构建显式模型,而是在预测时直接计算
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出