本片来讲如何将爬取到的数据插入到mysql数据库中,用到的工具有PyCharm和Navicat for MySQL或者是Navicat Premium这两个.
爬取的网站是:http://books.toscrape.com/,这个很多教程里都有讲解,这里不做赘述,我们先打开navicat, 在新建查询,编辑器里边创建table(用的是db_name这个库):
成功之后,books就像这样:
打开PyCharm,先建toscrape_book为名的爬虫项目,在items.py中的代码如下:
from scrapy import Item,Field
class BookItem(Item):
name = Field()
price =Field()
review_rating =Field() #评价星级
review_num =Field() #评价数量
upc =Field() #产品编码
stock =Field() # 存库量
爬虫文件中books.py:
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from toscrape_book.items import BookItem
class BooksSpider(scrapy.Spider):
name = 'books'
allowed_domains = ['books.toscrape.com']
start_urls = ['http://books.toscrape.com/']
cats={ #这里主要是将评价星级的英文匹配成了数字
'One':'1',
'Two':'2',
'Three':'3',
'Four':'4',
'Five':'5'
}
def parse(self, response):
le = LinkExtractor(restrict_css='article.product_pod h3')#获取每本书详细页面的链接
for link in le.extract_links(response):
yield scrapy.Request(link.url,callback=self.parse_book,dont_filter=True)
le = LinkExtractor(restrict_css='ul.pager li.next') #获取翻页的链接
links = le.extract_links(response)
if links:
next_link = links[0].url
yield scrapy.Request(next_link,callback=self.parse,dont_filter=True)
def parse_book(self,response):
item=BookItem()
sel = response.css('div.product_main')
item['name']= sel.xpath('./h1/text()').extract_first()
item['price']= sel.css('p.price_color::text').extract_first()
rating = sel.css('p.star-rating::attr(class)').re_first('star-rating ([A-Za-z]+)')
item['review_rating'] = self.cats[rating] #将评价星级的英文匹配成数字
sel= response.css('table.table.table-striped')
item['review_num']=sel.xpath('.//tr[last()]/td/text()').extract_first()
item['upc']=sel.xpath('.//tr[1]/td/text()').extract_first()
item['stock']=sel.xpath('.//tr[last()-1]/td/text()').re_first('\((\d+) available\)') #用正则找available前的数字
yield item
settings.py:
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
ITEM_PIPELINES = {
'toscrape_book.pipelines.MySQLPipeline': 100,
}
# Mysql数据库连接,以下是我的数据库信息
MYSQL_HOST = 'localhost'
MYSQL_DB_NAME = 'db_name'
MYSQL_USER = 'root'
MYSQL_PASSWORD = '你自己的数据库密码'
MYSQL_PORT =3306
pipelines.py:
# -*- coding: utf-8 -*-
import pymysql #用来连接数据库的第三方库文件
from scrapy.conf import settings
class MySQLPipeline(object):
def process_item(self,item,spider):
db= settings['MYSQL_DB_NAME'] #调用settings.py中的对应数据信息
host = settings['MYSQL_HOST']
port = settings['MYSQL_PORT']
user = settings['MYSQL_USER']
passwd =settings['MYSQL_PASSWORD']
db_conn = pymysql.connect(host = host,port = port, db= db,user=user,passwd=passwd,charset ='utf8')
db_cur = db_conn.cursor() #创建cursor对象取执行SQL语句
print("数据库连接成功")
values =( #这是我们要传入数据库的值
item['upc'],
item['name'],
item['price'],
item['review_rating'],
item['review_num'],
item['stock'],
)
try:
sql = 'INSERT INTO books VALUES (%s,%s,%s,%s,%s,%s)' #SQL语句
db_cur.execute(sql,values) #用execute执行
print("数据插入成功")
except Exception as e:
print('Insert error:', e)
db_conn.rollback()
else:
db_conn.commit() #每插入一次就commit一次,数据才算保存了下来
db_cur.close()
return item
可以啦,这样就建立了一个简单的连接和插入啦,在terminal中运行爬虫:
scrapy crawl books
打开查看navicat,结果如下图:
但是这样建立的插入连接非常低效,每插入一条就commit一次且连接一次数据库,解决方法就是实现异步网络框架,利用 Twisted.enterprise 中的 adbapi模块,即可显著提高程序访问数据库的效率,这点将在案例(五)中讲解。