白裳丶
为啥你们只收藏不点赞?
161 人赞了该文章
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势(不过已经被CVPR 2017的YOLO9000超越)。
图1 速度对比
SSD具有如下主要特点:
本文接下来都以SSD 300为例进行分析。
图2 SSD300/YOLO网络结构对比
上图2是原论文中的SSD300与YOLO网络结构图。位什么要把SSD与YOLO对比呢?因为截止到目前目标检测分为了2种主流框架:
那么来看同为Single shot方式的SSD/YOLO区别:
对比如图3。
图3 单层feature map预测和特征金字塔预测对比
在SSD300中引入了Prior Box,实际上与Faster RCNN Anchor非常类似,就是一些目标的预选框,后续通过classification+bounding box regression获得真实目标的位置。
SSD按照如下规则生成prior box:
图4 prior box
公式中的 是指进行预测时使用feature map的数量,如SSD300使用conv4-3等6个feature maps进行预测,所以 。同时原文设定 , 。
那么:
显然可以用上述公式推导出每个feature maps使用的Prior Box size。但是在SSD300中prior box设置并不能完全和上述公式对应:
不过依然可以看出:SSD使用感受野小的feature map检测小目标,使用感受野大的feature map检测更大目标。
更具体一点,来看SSD300在conv4_3层的Prior Box设置conv4_3生成prior box的conv4_3_norm_priorbox层prototxt定义如下,可以清晰的看到 和 以及 等值。
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3_norm"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 30.0
max_size: 60.0
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 8
offset: 0.5
}
}
知道了priorbox如何产生,接下来分析prior box如何使用。这里还是以conv4_3分析。
图5
从图5可以看到,在conv4_3网络分为了3条线路:
后续通过softmax分类判定Prior box是否包含目标,然后再通过bounding box regression即可可获取目标的精确位置,熟悉Faster RCNN的读者应该对上述过程应该并不陌生。其实pribox box的与Faster RCNN中的anchor非常类似,都是目标的预设框,没有本质的差异。区别是每个位置的prior box一般是4~6个,少于Faster RCNN默认的9个anchor;同时prior box是设置在不同尺度的feature maps上的,而且大小不同。
还有一个细节就是上面prototxt中的4个variance,这实际上是一种bounding regression中的权重。在图4线路(2)中,网络输出[dxmin,dymin,dxmax,dymax],即对应下面代码中bbox;然后利用如下方法进行针对prior box的位置回归:
decode_bbox->set_xmin(
prior_bbox.xmin() + prior_variance[0] * bbox.xmin() * prior_width);
decode_bbox->set_ymin(
prior_bbox.ymin() + prior_variance[1] * bbox.ymin() * prior_height);
decode_bbox->set_xmax(
prior_bbox.xmax() + prior_variance[2] * bbox.xmax() * prior_width);
decode_bbox->set_ymax(
prior_bbox.ymax() + prior_variance[3] * bbox.ymax() * prior_height);
上述代码可以在SSD box_utils.cpp的void DecodeBBox()函数见到。
对于新学习SSD的人,肯定有一个很大的困惑,就是这么多feature maps和Prior Box,如何组合在一起进行forwards/backwards。本节专门介绍SSD的数据流动方式,也许有点难。但是只有了解SSD的数据流动方式才能真的理解。
图6
上一节以conv4_3 feature map分析了如何检测到目标的真实位置,但是SSD 300是使用包括conv4_3在内的共计6个feature maps一同检测出最终目标的。在网络运行的时候显然不能像图6一样:一个feature map单独计算一次multiclass softmax socre+box regression(虽然原理如此,但是不能如此实现)。
那么多个feature maps如何协同工作?这时候就要用到Permute,Flatten和Concat这3种层了。其中conv4_3_norm_conf_perm的prototxt定义如下:
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
Permute是SSD中自带的层,上面conv4_3_norm_mbox_conf_perm的的定义。Permute相当于交换caffe blob中的数据维度。在正常情况下caffe blob的顺序为:
bottom blob = [batch_num, channel, height, width]
经过conv4_3_norm_mbox_conf_perm后的caffe blob为:
top blob = [batch_num, height, width, channel]
而Flattlen和Concat层都是caffe自带层,请参照caffe official documentation理解。
图7 SSD中部分层caffe blob shape变化
那么接下来以conv4_3和fc7为例分析SSD是如何将不同size的feature map组合在一起进行prediction。图7展示了conv4_3和fc7合并在一起的过程中caffe blob shape变化(其他层类似,考虑到图片大小没有画出来,请脑补)。
可以看到,SSD一次判断priorbox到底是背景 or 是20种目标类别之一,相当于将Faster R-CNN的RPN与后续proposal再分类进行了整合。
图8 SSD300
SSD算法的优点应该很明显:运行速度可以和YOLO媲美,检测精度可以和Faster RCNN媲美。除此之外,还有一些鸡毛蒜皮的优点,不解释了。这里谈谈缺点:
对于SSD,虽然paper中指出采用了所谓的“multibox loss”,但是依然可以清晰看到SSD loss分为了confidence loss和location loss(bouding box regression loss)两部分,其中N是match到GT(Ground Truth)的prior box数量;而α参数用于调整confidence loss和location loss之间的比例,默认α=1。SSD中的confidence loss是典型的softmax loss:
其中
代表第i个prior box匹配到了第j个class为p类别的GT box;而location loss是典型的smooth L1 loss:
Matching strategy:
在训练时,groundtruth boxes 与 default boxes(就是prior boxes) 按照如下方式进行配对:
图9 jaccard overlap
Hard negative mining:
值得注意的是,一般情况下negative default boxes数量>>positive default boxes数量,直接训练会导致网络过于重视负样本,从而loss不稳定。所以需要采取:
Data augmentation:
数据增广。即对每一张image进行如下之一变换获取一个patch进行训练:
图10 Random crop
同时在原文中还提到:
最终以这些处理好的patches进行训练。
其实Matching strategy,Hard negative mining,Data augmentation,都是为了加快网络收敛而设计的。尤其是Data augmentation,翻来覆去的randomly crop,保证每一个prior box都获得充分训练而已。后续有Focal loss解决这个问题。
SSD github : https://github.com/weiliu89/caffe/tree/ssd
SSD paper : https://arxiv.org/abs/1512.02325
SSD eccv2016 slide pdf : http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf
Focal Loss for Dense Object Detection :https://arxiv.org/abs/1708.02002
最后多说一句,如果是新手,了解经典的Faster RCNN/YOLO/SSD三种算法肯定就是入门检测啦。