转载自公众号:Charles_pikachu
任务:
根据给定的关键字,爬取与该关键字相关的所有图书数据。
实现:
以关键字为python为例,我们要爬取的图书数据的网页页面是这样子的:
其中,网页的链接格式为:
http://search.dangdang.com/?key={keyword}&act=input&page_index={page_index}'
因此请求所有与关键词相关的链接:
然后利用BeautifulSoup分别解析返回的网页数据,提取我们自己需要的数据即可:
运行效果:
在cmd窗口运行"ddSpider.py"文件即可。
效果如下:
本部分内容所有源代码均在:****相关文件里的ddSpider.py文件中。
数据分析
好的,现在就简单地可视化分析一波我们爬取到的61页python相关的图书数据吧~
让我们先看看图书的价格分布吧:
有没有人想知道最贵的一本python相关的书的单价是多少呀?答案是:28390RMB
书名是:
Python in Computers Programming
QAQ买不起买不起。
再来看看图书的评分分布呗:
看来大多数python相关的图书都没人买过诶~大概是买不起吧T_T。
再来评论数量?
那么评论数量TOP6的图书有哪些呢?
老规矩,画两个词云作结吧,把所有python相关的图书的简介做成词云如何?
本部分内容所有源代码均在:
相关文件里的analysis.py文件中。
全部代码如下:
爬虫代码:
'''
Function:
当当网图书爬虫
Author:
Charles
微信公众号:
Charles的皮卡丘
'''
import time
import pickle
import random
import requests
from bs4 import BeautifulSoup
headers = {
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Host': 'search.dangdang.com'
}
'''解析, 提取需要的数据'''
def parseHtml(html):
data = {}
soup = BeautifulSoup(html, 'lxml')
conshoplist = soup.find_all('div', {'class': 'con shoplist'})[0]
for each in conshoplist.find_all('li'):
# 书名
bookname = each.find_all('a')[0].get('title').strip(' ')
# 书图
img_src = each.find_all('a')[0].img.get('data-original')
if img_src is None:
img_src = each.find_all('a')[0].img.get('src')
img_src = img_src.strip(' ')
# 价格
price = float(each.find_all('p', {'class': 'price'})[0].span.text[1:])
# 简介
detail = each.find_all('p', {'class': 'detail'})[0].text
# 评分
stars = float(each.find_all('p', {'class': 'search_star_line'})[0].span.span.get('style').split(': ')[-1].strip('%;')) / 20
# 评论数量
num_comments = float(each.find_all('p', {'class': 'search_star_line'})[0].a.text[:-3])
data[bookname] = [img_src, price, detail, stars, num_comments]
return data
'''主函数'''
def main(keyword):
url = 'http://search.dangdang.com/?key={}&act=input&page_index={}'
results = {}
num_page = 0
while True:
num_page += 1
print('[INFO]: Start to get the data of page%d...' % num_page)
page_url = url.format(keyword, num_page)
res = requests.get(page_url, headers=headers)
if '抱歉,没有找到与“%s”相关的商品,建议适当减少筛选条件' % keyword in res.text:
break
page_data = parseHtml(res.text)
results.update(page_data)
time.sleep(random.random() + 0.5)
with open('%s_%d.pkl' % (keyword, num_page-1), 'wb') as f:
pickle.dump(results, f)
return results
if __name__ == '__main__':
main('python')
分析代码:
'''
Function:
当当网图书爬虫
Author:
Charles
微信公众号:
Charles的皮卡丘
'''
import os
import jieba
import pickle
from pyecharts import Bar
from pyecharts import Pie
from pyecharts import Funnel
from wordcloud import WordCloud
'''柱状图(2维)'''
def drawBar(title, data, savepath='./results'):
if not os.path.exists(savepath):
os.mkdir(savepath)
bar = Bar(title, title_pos='center')
bar.use_theme('vintage')
attrs = [i for i, j in data.items()]
values = [j for i, j in data.items()]
bar.add('', attrs, values, xaxis_rotate=15, yaxis_rotate=30)
bar.render(os.path.join(savepath, '%s.html' % title))
'''饼图'''
def drawPie(title, data, savepath='./results'):
if not os.path.exists(savepath):
os.mkdir(savepath)
pie = Pie(title, title_pos='center')
pie.use_theme('westeros')
attrs = [i for i, j in data.items()]
values = [j for i, j in data.items()]
pie.add('', attrs, values, is_label_show=True, legend_orient="vertical", legend_pos="left", radius=[30, 75], rosetype="area")
pie.render(os.path.join(savepath, '%s.html' % title))
'''漏斗图'''
def drawFunnel(title, data, savepath='./results'):
if not os.path.exists(savepath):
os.mkdir(savepath)
funnel = Funnel(title, title_pos='center')
funnel.use_theme('chalk')
attrs = [i for i, j in data.items()]
values = [j for i, j in data.items()]
funnel.add("", attrs, values, is_label_show=True, label_pos="inside", label_text_color="#fff", funnel_gap=5, legend_pos="left", legend_orient="vertical")
funnel.render(os.path.join(savepath, '%s.html' % title))
'''统计词频'''
def statistics(texts, stopwords):
words_dict = {}
for text in texts:
temp = jieba.cut(text)
for t in temp:
if t in stopwords or t == 'unknow':
continue
if t in words_dict.keys():
words_dict[t] += 1
else:
words_dict[t] = 1
return words_dict
'''词云'''
def drawWordCloud(words, title, savepath='./results'):
if not os.path.exists(savepath):
os.mkdir(savepath)
wc = WordCloud(font_path='simkai.ttf', background_color='white', max_words=2000, width=1920, height=1080, margin=5)
wc.generate_from_frequencies(words)
wc.to_file(os.path.join(savepath, title+'.png'))
if __name__ == '__main__':
with open('python_61.pkl', 'rb') as f:
data = pickle.load(f)
# 价格分布
results = {}
prices = []
price_max = ['', 0]
for key, value in data.items():
price = value[1]
if price_max[1] < price:
price_max = [key, price]
prices.append(price)
results['小于50元'] = sum(i < 50 for i in prices)
results['50-100元'] = sum((i < 100 and i >= 50) for i in prices)
results['100-200元'] = sum((i < 200 and i >= 100) for i in prices)
results['200-300元'] = sum((i < 300 and i >= 200) for i in prices)
results['300-400元'] = sum((i < 400 and i >= 300) for i in prices)
results['400元以上'] = sum(i >= 400 for i in prices)
drawPie('python相关图书的价格分布', results)
print('价格最高的图书为: %s, 目前单价为: %f' % (price_max[0], price_max[1]))
# 评分分布
results = {}
stars = []
for key, value in data.items():
star = value[3] if value[3] > 0 else '暂无评分'
stars.append(str(star))
for each in sorted(set(stars)):
results[each] = stars.count(each)
drawBar('python相关图书评分分布', results)
# 评论数量
results = {}
comments_num = []
top6 = {}
for key, value in data.items():
num = int(value[-1])
comments_num.append(num)
top6[key.split('【')[0].split('(')[0].split('(')[0].split(' ')[0].split(':')[0]] = num
results['0评论'] = sum(i == 0 for i in comments_num)
results['0-100评论'] = sum((i > 0 and i <= 100) for i in comments_num)
results['100-1000评论'] = sum((i > 100 and i <= 1000) for i in comments_num)
results['1000-5000评论'] = sum((i > 1000 and i <= 5000) for i in comments_num)
results['5000评论以上'] = sum(i > 5000 for i in comments_num)
drawFunnel('python相关图书评论数量分布', results)
top6 = dict(sorted(top6.items(), key=lambda item: item[1])[-6:])
drawBar('python相关图书评论数量TOP6', top6)
# 词云
stopwords = open('./stopwords.txt', 'r', encoding='utf-8').read().split('\n')[:-1]
texts = [j[2] for i, j in data.items()]
words_dict = statistics(texts, stopwords)
drawWordCloud(words_dict, 'python相关图书简介词云', savepath='./results')