周末根据Tariq Rashid大神的指导,没有使用tensorflow等框架,用python编写了一个三层神经网络,并应用再mnist手写库识别上,经过多方面参数调优,识别率竟然达到了98%。 调优比较难,经验感觉特别宝贵,为避免时间长了忘记,记录整理如下。
一、加载所需要的库
二、定义神经网络类
三、创建神经网络对象并用MNIST训练集训练
四、用测试集测试准确率
五、参数调优过程记录
六、测试下自己绘制的字体图片识别效果
七、特别优化:补充旋转图像的模型训练
一、加载所需要的库
# Code for a 3-layer neural network, and code for learning the MNIST dataset
# [email protected],2018.8 Studying to write neural network by python
# license is GPLv2
import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
import matplotlib.pyplot
# ensure the plots are inside this jupyter notebook, not an external window
%matplotlib inline
# helper to load data from PNG image files
import imageio
# glob helps select multiple files using patterns
import glob
二、定义神经网络类
# neural network class definition (3 layers)
class neuralNetwork:
# initialise the neural network
def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
# set number of nodes in each input,hidden,output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
# learning rate
self.lr = learningrate
# link weight matrices ,wih and who
# weithg inside the arrays are w_i_j, where link is from node i to node j in the next layer
# w11 w21
# w12 w22 etc
self.wih = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.inodes) ) )
self.who = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) ) )
# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)
pass
# train the neural network
def train(self,inputs_list,targets_list):
# convert inputs list to 2d array
inputs = numpy.array(inputs_list,ndmin=2).T
targets = numpy.array(targets_list,ndmin=2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih,inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# output layer error is the (target-actual)
output_errors = targets - final_outputs
# hidden layer error is the output_errors,split by weights,recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)
# update the weights for the links between the hidden and output layers
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
# update the weights for the links between the input and hidden layers
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
pass
# query the neural network
def query(self,inputs_list):
# convert inputs list to 2d array
inputs = numpy.array(inputs_list,ndmin=2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih,inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
return final_outputs
三、创建神经网络对象并用MNIST训练集训练
# number of input,hidden and output nodes
# 28 * 28 = 784
input_nodes = 784
hidden_nodes = 200
output_nodes = 10
# learning rate is 0.3
learning_rate = 0.1
# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
# train the neural network
# load the mnist training data csv file into a list
training_data_file = open("mnist_dataset/mnist_train.csv",'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
# epochs is the number of times the training data set is used for training
epochs = 5
for e in range(epochs):
# go through all records in the training data set
for record in training_data_list:
all_values = record.split(',')
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# create the target output values (all 0.01, except the desired label which is 0.99)
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs,targets)
pass
pass
四、用测试集测试准确率
# test the neural network
# load the mnist test data csv file to a list
test_data_file = open("mnist_dataset/mnist_test.csv",'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
# scorecard for how well the network performs,initially empty
scorecard = []
# go through all records in the test data set
for record in test_data_list:
all_values = record.split(',')
# correct answer is first value
correct_label = int(all_values[0])
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# query the network
outputs = n.query(inputs)
# the index of the highest value corresponds to the label
label = numpy.argmax(outputs)
# print("Answer label is:",correct_label," ; ",label," is network's answer")
# append correct or incorrect to list
if(label == correct_label):
# network's answer matches correct answer, add 1 to scorecard
scorecard.append(1)
else:
scorecard.append(0)
pass
# calculate the performance score ,the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print("performance = ", scorecard_array.sum() / scorecard_array.size )
五、参数调优过程记录
由于代码编写根据S曲线激活函数设计了输入、输出值范围,代码中进行了专门的优化考虑, 训练优化不考虑更换激活函数。
'''
有效的参数调优说明
学习率 训练轮数 隐藏层节点 结果准确率 说明
0.3 1 100 0.9473 初始经验,效果还不错。
0.6 1 100 0.9047 学习率再增加到0.6,测试准确率下降。好像大的学习率导致了梯度下降中有来回跳动和超调
0.1 1 100 0.9502 降低学习率到0.1,准确率增加。
0.01 1 100 0.9241 更低的学习率也不行,应该是限制了梯度下降的速度,步长太小。
0.2 1 100 0.9515 学习率调到0.2为最优
0.2 5 100 0.9611 5~7轮迭代是比较好的经验值。测试准确率提高到96.11%
0.1 5 100 0.9653 增加训练轮数,可适当降低学习率,神经网络有更优的表现
0.1 5 200 0.9723 增加影藏层节点数,神经网络有更好的学习能力
0.1 5 500 0.9751 这个结果已经非常好了!
'''
六、测试下自己绘制的字体图片识别效果(28*28)
# 测试神经网络是否能准确识别自己的手绘28*28 png图像
# our own image test data set
our_own_dataset = []
# load the png image data as test data set
for image_file_name in glob.glob('my_own_images/2828_my_own_?.png'):
# use the filename to set the correct label
label = int(image_file_name[-5:-4])
# load image data from png files into an array
print ("loading ... ", image_file_name)
img_array = imageio.imread(image_file_name, as_gray=True)
# reshape from 28x28 to list of 784 values, invert values
img_data = 255.0 - img_array.reshape(784)
# then scale data to range from 0.01 to 1.0
img_data = (img_data / 255.0 * 0.99) + 0.01
print(numpy.min(img_data))
print(numpy.max(img_data))
# append label and image data to test data set
record = numpy.append(label,img_data)
our_own_dataset.append(record)
pass
# test the neural network with our own images
# record to test
item = 2
# plot image
matplotlib.pyplot.imshow(our_own_dataset[item][1:].reshape(28,28), cmap='Greys', interpolation='None')
# correct answer is first value
correct_label = our_own_dataset[item][0]
# data is remaining values
inputs = our_own_dataset[item][1:]
# query the network
outputs = n.query(inputs)
print (outputs)
# the index of the highest value corresponds to the label
label = numpy.argmax(outputs)
print("network says ", label)
# append correct or incorrect to list
if (label == correct_label):
print ("Good,match!")
else:
print ("no match!")
pass
结果样子如下:
前面所有事情做好后,最高达到了 97.5%, 还算不错!
七、特别优化:补充旋转图像的模型训练(按经验,分别左、右旋转10度)
在神经网络训练部分增加对旋转图像的训练,如下后面部分:
# train the neural network
# epochs is the number of times the training data set is used for training
epochs = 10
for e in range(epochs):
# go through all records in the training data set
for record in training_data_list:
# split the record by the ',' commas
all_values = record.split(',')
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# create the target output values (all 0.01, except the desired label which is 0.99)
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
## create rotated variations
# rotated anticlockwise by x degrees
inputs_plusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), 10, cval=0.01, order=1, reshape=False)
n.train(inputs_plusx_img.reshape(784), targets)
# rotated clockwise by x degrees
inputs_minusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), -10, cval=0.01, order=1, reshape=False)
n.train(inputs_minusx_img.reshape(784), targets)
pass
pass
将训练轮次调整为10,完成对旋转图像的训练后, 神经网络模型在测试验证中准确率达到了 97.9% , 已经非常好了!