用python创建的神经网络--mnist手写数字识别率达到98%

周末根据Tariq Rashid大神的指导,没有使用tensorflow等框架,用python编写了一个三层神经网络,并应用再mnist手写库识别上,经过多方面参数调优,识别率竟然达到了98%。  调优比较难,经验感觉特别宝贵,为避免时间长了忘记,记录整理如下。

目录

一、加载所需要的库

二、定义神经网络类

三、创建神经网络对象并用MNIST训练集训练

四、用测试集测试准确率

五、参数调优过程记录

六、测试下自己绘制的字体图片识别效果

七、特别优化:补充旋转图像的模型训练

具体过程记录

一、加载所需要的库

# Code for a 3-layer neural network, and code for learning the MNIST dataset
# [email protected],2018.8  Studying to write neural network by python
# license is GPLv2

import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
import matplotlib.pyplot
# ensure the plots are inside this jupyter notebook, not an external window
%matplotlib inline

# helper to load data from PNG image files
import imageio
# glob helps select multiple files using patterns
import glob

二、定义神经网络类

# neural network class definition (3 layers)
class neuralNetwork:
    # initialise the neural network
    def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
        # set number of nodes in each input,hidden,output layer
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        # learning rate
        self.lr = learningrate
        
        # link weight matrices ,wih and who
        # weithg inside the arrays are w_i_j, where link is from node i to node j in the next layer
        # w11 w21
        # w12 w22 etc
        self.wih = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.inodes) )  )
        self.who = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) )  )
        
        # activation function is the sigmoid function
        self.activation_function = lambda x: scipy.special.expit(x)

        pass
    
    # train the neural network
    def train(self,inputs_list,targets_list):
        # convert inputs list to 2d array        
        inputs = numpy.array(inputs_list,ndmin=2).T
        targets = numpy.array(targets_list,ndmin=2).T
        
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih,inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        # output layer error is the (target-actual)
        output_errors = targets - final_outputs
        # hidden layer error is the output_errors,split by weights,recombined at hidden nodes
        hidden_errors = numpy.dot(self.who.T, output_errors)
        
        # update the weights for the links between the hidden and output layers
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
        
        # update the weights for the links between the input and hidden layers
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
        
        pass
    
    # query the neural network
    def query(self,inputs_list):
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list,ndmin=2).T
        
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih,inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs

三、创建神经网络对象并用MNIST训练集训练

# number of input,hidden and output nodes
# 28 * 28 = 784
input_nodes = 784
hidden_nodes = 200
output_nodes = 10

# learning rate is 0.3
learning_rate = 0.1

# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)

# train the neural network

# load the mnist training data csv file into a list
training_data_file = open("mnist_dataset/mnist_train.csv",'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

# epochs is the number of times the training data set is used for training
epochs = 5
for e in range(epochs):
    # go through all records in the training data set
    for record in training_data_list:
        all_values = record.split(',')
        # scale and shift the inputs
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desired label which is 0.99)
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        targets[int(all_values[0])] = 0.99
        n.train(inputs,targets)
        pass
    pass

四、用测试集测试准确率

# test the neural network

# load the mnist test data csv file to a list
test_data_file = open("mnist_dataset/mnist_test.csv",'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

# scorecard for how well the network performs,initially empty 
scorecard = []
# go through all records in the test data set
for record in test_data_list:
    all_values = record.split(',')
    # correct answer is first value
    correct_label = int(all_values[0])
    # scale and shift the inputs
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    label = numpy.argmax(outputs)
#    print("Answer label is:",correct_label," ; ",label," is network's answer")
    # append correct or incorrect to list
    if(label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        scorecard.append(1)
    else:
        scorecard.append(0)        
    pass

# calculate the performance score ,the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print("performance = ", scorecard_array.sum() / scorecard_array.size )

五、参数调优过程记录

由于代码编写根据S曲线激活函数设计了输入、输出值范围,代码中进行了专门的优化考虑, 训练优化不考虑更换激活函数。

'''
有效的参数调优说明

学习率  训练轮数 隐藏层节点  结果准确率    说明
0.3      1         100       0.9473      初始经验,效果还不错。
0.6      1         100       0.9047      学习率再增加到0.6,测试准确率下降。好像大的学习率导致了梯度下降中有来回跳动和超调
0.1      1         100       0.9502      降低学习率到0.1,准确率增加。
0.01     1         100       0.9241      更低的学习率也不行,应该是限制了梯度下降的速度,步长太小。
0.2      1         100       0.9515      学习率调到0.2为最优
0.2      5         100       0.9611      5~7轮迭代是比较好的经验值。测试准确率提高到96.11%
0.1      5         100       0.9653      增加训练轮数,可适当降低学习率,神经网络有更优的表现
0.1      5         200       0.9723      增加影藏层节点数,神经网络有更好的学习能力
0.1      5         500       0.9751      这个结果已经非常好了!

'''

六、测试下自己绘制的字体图片识别效果(28*28)

# 测试神经网络是否能准确识别自己的手绘28*28 png图像

# our own image test data set
our_own_dataset = []

# load the png image data as test data set
for image_file_name in glob.glob('my_own_images/2828_my_own_?.png'):
    
    # use the filename to set the correct label
    label = int(image_file_name[-5:-4])
    
    # load image data from png files into an array
    print ("loading ... ", image_file_name)
    img_array = imageio.imread(image_file_name, as_gray=True)
    
    # reshape from 28x28 to list of 784 values, invert values
    img_data  = 255.0 - img_array.reshape(784)
    
    # then scale data to range from 0.01 to 1.0
    img_data = (img_data / 255.0 * 0.99) + 0.01
    print(numpy.min(img_data))
    print(numpy.max(img_data))
    
    # append label and image data  to test data set
    record = numpy.append(label,img_data)
    our_own_dataset.append(record)
    
    pass

# test the neural network with our own images

# record to test
item = 2

# plot image
matplotlib.pyplot.imshow(our_own_dataset[item][1:].reshape(28,28), cmap='Greys', interpolation='None')

# correct answer is first value
correct_label = our_own_dataset[item][0]
# data is remaining values
inputs = our_own_dataset[item][1:]

# query the network
outputs = n.query(inputs)
print (outputs)

# the index of the highest value corresponds to the label
label = numpy.argmax(outputs)
print("network says ", label)
# append correct or incorrect to list
if (label == correct_label):
    print ("Good,match!")
else:
    print ("no match!")
    pass

结果样子如下:

用python创建的神经网络--mnist手写数字识别率达到98%_第1张图片

前面所有事情做好后,最高达到了 97.5%, 还算不错!

用python创建的神经网络--mnist手写数字识别率达到98%_第2张图片

七、特别优化:补充旋转图像的模型训练(按经验,分别左、右旋转10度)

在神经网络训练部分增加对旋转图像的训练,如下后面部分:

# train the neural network

# epochs is the number of times the training data set is used for training
epochs = 10

for e in range(epochs):
    # go through all records in the training data set
    for record in training_data_list:
        # split the record by the ',' commas
        all_values = record.split(',')
        # scale and shift the inputs
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desired label which is 0.99)
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        targets[int(all_values[0])] = 0.99
        n.train(inputs, targets)
        
        ## create rotated variations
        # rotated anticlockwise by x degrees
        inputs_plusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), 10, cval=0.01, order=1, reshape=False)
        n.train(inputs_plusx_img.reshape(784), targets)
        # rotated clockwise by x degrees
        inputs_minusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), -10, cval=0.01, order=1, reshape=False)
        n.train(inputs_minusx_img.reshape(784), targets)
             
        pass
    pass

将训练轮次调整为10,完成对旋转图像的训练后, 神经网络模型在测试验证中准确率达到了 97.9%  , 已经非常好了!

用python创建的神经网络--mnist手写数字识别率达到98%_第3张图片

 

你可能感兴趣的:(学习笔记,python,机器学习)