傅里叶级数推导

物理意义:把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。

三角函数系

cos x, sinx, cos2x, sin2x.…, cosnx, sinnx.…

正交性

在[- π \pi π π \pi π]上正交,即其中任意两个不同的函数之积在[- π \pi π π \pi π]上的积分等于0.

可以证明:

  • ∫ − π π cos ⁡ n x d x = 0 \int_{-\pi}^{\pi} \cos n x d x=0 ππcosnxdx=0
  • ∫ − π π sin ⁡ n x d x = 0 \int_{-\pi}^{\pi} \sin n x d x=0 ππsinnxdx=0
  • ∫ − π π cos ⁡ m x cos ⁡ n x d x = 0 ( m = 1 , 2 , 3 , ⋯   , n = 1 , 2 , 3 , ⋯ m ≠ n ) \begin{array}{c}{\int_{-\pi}^{\pi} \cos m x \cos n x d x=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots m \neq n )}\end{array} ππcosmxcosnxdx=0(m=1,2,3,,n=1,2,3,m̸=n)
  • ∫ − π π sin ⁡ m x sin ⁡ n x d x = 0 ( m = 1 , 2 , 3 , ⋯   , n = 1 , 2 , 3 , ⋯ m ≠ n ) \begin{array}{c}{\int_{-\pi}^{\pi} \sin m x \sin n x d x=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots m \neq n )}\end{array} ππsinmxsinnxdx=0(m=1,2,3,,n=1,2,3,m̸=n)
  • ∫ − π π sin ⁡ m x cos ⁡ n x d x = 0 ( m = 1 , 2 , 3 , ⋯   , n = 1 , 2 , 3 , ⋯   ) \begin{aligned} \int_{-\pi}^{\pi} \sin m x \cos n x d x &=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots ) \end{aligned} ππsinmxcosnxdx=0(m=1,2,3,,n=1,2,3,)当m=n时
    ∫ − π π 1 ⋅ 1 d x = 2 π ∫ − π π cos ⁡ 2 n x d x = π ∫ − π π sin ⁡ 2 n x d x = π ( n = 1 , 2 , ⋯   ) \begin{array}{l}{\int_{-\pi}^{\pi} 1 \cdot 1 \mathrm{d} x=2 \pi} \\\\ {\int_{-\pi}^{\pi} \cos ^{2} n x d x=\pi} \\\\ {\int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi}\end{array}(n=1,2, \cdots) ππ11dx=2πππcos2nxdx=πππsin2nxdx=π(n=1,2,)
    f ( x ) f(x) f(x)是周期为2 π \pi π的周期函数,且可逐项积分,利用三角级数得
    f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) f(x)=2a0+n=1(ancosnx+bnsinnx) 想要表达 f ( x ) f(x) f(x)得求出 a 0 , a n , b n a_{0},a_{n},b_{n} a0,an,bn,对两边进行积分得
    ∫ − π π f ( x ) d x = ∫ − π π a 0 2 d x + ∑ n = 1 ∞ [ ∫ − π π a n cos ⁡ n x d x + ∫ − π π b n sin ⁡ n x d x ] \begin{aligned} \int_{-\pi}^{\pi} f(x) \mathrm{d} x=& \int_{-\pi}^{\pi} \frac{a_{0}}{2} \mathrm{d} x+\sum_{n=1}^{\infty}\left[\int_{-\pi}^{\pi} a_{n} \cos n x \mathrm{d} x\right. +\int_{-\pi}^{\pi} b_{n} \sin n x \mathrm{d} x ] \end{aligned} ππf(x)dx=ππ2a0dx+n=1[ππancosnxdx+ππbnsinnxdx]因为 a 0 , a n , b n a_{0}, a_{n}, b_{n} a0,an,bn为常数,利用三角函数的正交性
  • ∫ − π π cos ⁡ n x d x = 0 \int_{-\pi}^{\pi} \cos n x d x=0 ππcosnxdx=0
  • ∫ − π π sin ⁡ n x d x = 0 \int_{-\pi}^{\pi} \sin n x d x=0 ππsinnxdx=0
    得到
    ∫ − π π f ( x ) d x = ∫ − π π a 0 2 d x = π a 0 \int_{-\pi}^{\pi} f(x) \mathrm{d} x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \mathrm{d} x=\pi a_{0} ππf(x)dx=ππ2a0dx=πa0
    a 0 = 1 π ∫ − π π f ( x ) d x a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x a0=π1ππf(x)dx
    为了求 a n a_{n} an,在等式两边 cos ⁡ k x \cos k x coskx
    ∫ − π π f ( x ) cos ⁡ k x d x = ∫ − π π a 0 2 cos ⁡ k x d x + ∑ n = 1 ∞ I − π π a n cos ⁡ k x cos ⁡ n x d x + ∫ − π π b n cos ⁡ k x sin ⁡ n x d x ] \begin{aligned} \int_{-\pi}^{\pi} f(x) \cos k x d x &=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \cos k x d x \\ &+\sum_{n=1}^{\infty} I_{-\pi}^{\pi} a_{n} \cos k x \cos n x d x \\ &+\int_{-\pi}^{\pi} b_{n} \cos k x \sin n x d x ] \end{aligned} ππf(x)coskxdx=ππ2a0coskxdx+n=1Iππancoskxcosnxdx+ππbncoskxsinnxdx]当k=n时,由三角函数的正交性可知 ∫ − π π a n cos ⁡ k x cos ⁡ n x d x = ∫ − π π a n cos ⁡ 2 n x d x = a n ∫ − π π 1 + cos ⁡ 2 n x 2 d x = a n π \begin{aligned} & \int_{-\pi}^{\pi} a_{n} \cos k x \cos n x d x=\int_{-\pi}^{\pi} a_{n} \cos ^{2} n x d x \\=& a_{n} \int_{-\pi}^{\pi} \frac{1+\cos 2 n x}{2} d x=a_{n} \pi \end{aligned} =ππancoskxcosnxdx=ππancos2nxdxanππ21+cos2nxdx=anπ其余各项均为零.因此 a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 1 , 2 , 3 , ⋯   ) a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad(n=1,2,3, \cdots) an=π1ππf(x)cosnxdx(n=1,2,3,)同理 b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , 3 , ⋯   ) b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad(n=1,2,3, \cdots) bn=π1ππf(x)sinnxdx(n=1,2,3,)
    整理一下得:
    { a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , ⋯   ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , 3 , ⋯   ) \left\{\begin{array}{ll}{a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x} & {(n=0,1,2, \cdots)} &\\\\ {b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x} & {(n=1,2,3, \cdots)}\end{array}\right. an=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx(n=0,1,2,)(n=1,2,3,)
    a n ( 0 开 始 的 ) , b n a_{n}(0开始的),b_{n} an(0)bn称为傅里叶系数。由傅里叶系数组成的三角级数称为傅里叶级数。


f ( x ) = { − 1 , − π ≤ x < 0 1 , 0 ≤ x < π f(x)=\left\{\begin{array}{lr}{-1,} & {-\pi \leq x<0} \\ {1,} & {0 \leq x<\pi}\end{array}\right. f(x)={1,1,πx<00x<π
傅里叶级数推导_第1张图片

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x = 1 π ∫ − π 0 ( − 1 ) cos ⁡ n x d x + 1 π ∫ 0 π cos ⁡ n x d x = − 1 π 1 n sin ⁡ n x ] − π 0 + 1 π 1 n sin ⁡ n x ] 0 π = 0 ( n = 0 , 1 , 2 , 3 ⋯   ) \begin{aligned} a_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\ &=\frac{1}{\pi} \int_{-\pi}^{0}(-1) \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi} \cos n x d x \\ &=-\frac{1}{\pi} \frac{1}{n} \sin n x ]_{-\pi}^{0}+\frac{1}{\pi} \frac{1}{n} \sin n x ]_{0}^{\pi}=0 \\ &(n=0,1,2,3 \cdots) \end{aligned} an=π1ππf(x)cosnxdx=π1π0(1)cosnxdx+π10πcosnxdx=π1n1sinnx]π0+π1n1sinnx]0π=0(n=0,1,2,3)
b n = 1 π ∫ − π π f ( x ) sin ⁡ u x d x = 1 π ∫ − π 0 ( − 1 ) sin ⁡ x d x + 1 π ∫ 0 π sin ⁡ x d x = 1 π 1 n cos ⁡ n x ∣ − π 0 − 1 π [ 1 n cos ⁡ n x ] 0 π = 2 n π [ 1 − ( − 1 ) n ] = { 4 n π , n = 1 , 3 , 5 , ⋯ 0 \begin{aligned} b_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin u x d x \\ &=\frac{1}{\pi} \int_{-\pi}^{0}(-1) \sin x d x+\frac{1}{\pi} \int_{0}^{\pi} \sin x d x \\ &=\frac{1}{\pi} \frac{1}{n} \cos n\left.x\right|_{-\pi} ^{0}-\frac{1}{\pi}\left[\frac{1}{n} \cos n x\right]_{0}^{\pi} \\ &=\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\ &=\left\{\begin{array}{l}{\frac{4}{n \pi}, n=1,3,5, \cdots} \\ {0}\end{array}\right. \end{aligned} bn=π1ππf(x)sinuxdx=π1π0(1)sinxdx+π10πsinxdx=π1n1cosnxπ0π1[n1cosnx]0π=nπ2[1(1)n]={nπ4,n=1,3,5,0所以 f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x = 4 π [ sin ⁡ x + 1 3 sin ⁡ 3 x + ⋯ + 1 2 n − 1 sin ⁡ ( 2 n − 1 ) x + ⋯   ] f(x)=\sum_{n=1}^{\infty}b_{n} \sin n x\\=\frac{4}{\pi}\left[\sin x+\frac{1}{3} \sin 3 x+\cdots+\frac{1}{2 n-1} \sin (2 n-1) x+\cdots\right] f(x)=n=1bnsinnx=π4[sinx+31sin3x++2n11sin(2n1)x+]

你可能感兴趣的:(通信)