MapReduce程序之二次排序与多次排序

[toc]


需求

有下面的数据:

cookieId    time    url
2   12:12:34    2_hao123
3   09:10:34    3_baidu
1   15:02:41    1_google
3   22:11:34    3_sougou
1   19:10:34    1_baidu
2   15:02:41    2_google
1   12:12:34    1_hao123
3   23:10:34    3_soso
2   05:02:41    2_google

假如我们现在的需求是先按 cookieId 排序,然后按 time 排序,以便按 session 切分日志,排序后的结果如下:

---------------------------------
1      12:12:34        1_hao123
1      15:02:41        1_google
1      19:10:34        1_baidu
---------------------------------
2      05:02:41        2_google
2      12:12:34        2_hao123
2      15:02:41        2_google
---------------------------------
3      09:10:34        3_baidu
3      22:11:34        3_sougou
3      23:10:34        3_soso

要求使用MapReduce程序实现。

程序思路分析

Map函数:
/**
 * Map函数,解析每一行记录为AccessLogWritable,这样Map输出的时候就可以根据
 * AccessLogWritable对象中的两个字段进行排序,从而实现前面要求的二次排序需求
 * 也就是说,排序依旧是依赖Map输出时的排序,但是规则是我们在AccessLogWritable中定义的
 */

 Reduce函数:
/**
 * 经过shuffle后到达Reducer的数据已经是有序的,所以直接写出即可
 */

所以为了进行多个数据的比较,我们需要自定义key来作为Map输出的key。

MapReduce程序

关于如何进行数据的排序,思路已经在代码注释中有说明,不过需要注意的是,这里使用了前面开发的Job工具类来开发驱动程序。

SecondSortJob.java

package com.uplooking.bigdata.mr.secondsort;

import com.uplooking.bigdata.common.utils.MapReduceJobUtil;
import com.uplooking.bigdata.mr.sort.SortJob;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

/**
 * MapReduce排序之二次排序
 */
public class SecondSortJob {

    /**
     * 驱动程序,使用工具类使用Job
     * @param args
     */
    public static void main(String[] args) throws Exception {
        if (args == null || args.length < 2) {
            System.err.println("Parameter Errors! Usages: ");
            System.exit(-1);
        }

        Job job = MapReduceJobUtil.buildJob(new Configuration(),
                SecondSortJob.class,
                args[0],
                TextInputFormat.class,
                SecondSortMapper.class,
                AccessLogWritable.class,
                NullWritable.class,
                new Path(args[1]),
                TextOutputFormat.class,
                SecondSortReducer.class,
                AccessLogWritable.class,
                NullWritable.class);

        // ReduceTask必须设置为1
        job.setNumReduceTasks(1);
        job.waitForCompletion(true);
    }

    /**
     * Map函数,解析每一行记录为AccessLogWritable,这样Map输出的时候就可以根据
     * AccessLogWritable对象中的两个字段进行排序,从而实现前面要求的二次排序需求
     * 也就是说,排序依旧是依赖Map输出时的排序,但是规则是我们在AccessLogWritable中定义的
     */
    public static class SecondSortMapper extends Mapper {
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            // 解析每一行
            String[] fields = value.toString().split("\t");
            if(fields == null || fields.length < 3) {
                return;
            }
            String cookieId = fields[0];
            String time = fields[1];
            String url = fields[2];
            // 构建AccessLogWritable对象
            AccessLogWritable logLine = new AccessLogWritable(cookieId, time, url);
            // 写出到context
            context.write(logLine, NullWritable.get());
        }
    }

    /**
     * 经过shuffle后到达Reducer的数据已经是有序的,所以直接写出即可
     */
    public static class SecondSortReducer extends Reducer {
        @Override
        protected void reduce(AccessLogWritable key, Iterable values, Context context)
                throws IOException, InterruptedException {
            context.write(key, NullWritable.get());
        }
    }
}

AccessLogWritable.java

package com.uplooking.bigdata.mr.secondsort;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * 自定义Hadoop数据类型,作为key,需要实现WritableComparable接口
 * map中排序需要比较的对象为AccessLogWritable,所以泛型填写为AccessLogWritable
 */
public class AccessLogWritable implements WritableComparable {

    private String cookieId;
    private String time;
    private String url;

    /**
     * 空参构造方法,必须要有,否则会有下面的异常:
     Caused by: java.lang.NoSuchMethodException: com.uplooking.bigdata.mr.secondsort.AccessLogWritable.()
     at java.lang.Class.getConstructor0(Class.java:3082)
     at java.lang.Class.getDeclaredConstructor(Class.java:2178)
     at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:125)
     ... 16 more
     */
    public AccessLogWritable() {

    }

    public AccessLogWritable(String cookieId, String time, String url) {
        this.cookieId = cookieId;
        this.time = time;
        this.url = url;
    }

    /**
     * 比较的方法,定义的规则为:
     * 先按 cookieId 排序,然后按 time 排序
     * @param o
     * @return
     */
    public int compareTo(AccessLogWritable o) {
        int ret = this.cookieId.compareTo(o.cookieId);
        // 如果cookieId比较结果相同,再比较time
        if(ret == 0) {
            ret = this.time.compareTo(o.time);
        }
        return ret;
    }

    public void write(DataOutput out) throws IOException {
        out.writeUTF(cookieId);
        out.writeUTF(time);
        out.writeUTF(url);
    }

    public void readFields(DataInput in) throws IOException {
        this.cookieId = in.readUTF();
        this.time = in.readUTF();
        this.url = in.readUTF();
    }

    @Override
    public String toString() {
        return cookieId + "\t" + time + "\t" + url;
    }
}

测试

这里使用本地环境来运行MapReduce程序,输入的参数如下:

/Users/yeyonghao/data/input/secondsort /Users/yeyonghao/data/output/mr/secondsort

也可以将其打包成jar包,然后上传到Hadoop环境中运行。

运行程序后,查看输出结果如下:

yeyonghao@yeyonghaodeMacBook-Pro:~/data/output/mr/secondsort$ cat part-r-00000
1   12:12:34    1_hao123
1   15:02:41    1_google
1   19:10:34    1_baidu
2   05:02:41    2_google
2   12:12:34    2_hao123
2   15:02:41    2_google
3   09:10:34    3_baidu
3   22:11:34    3_sougou
3   23:10:34    3_soso

可以看到,通过使用自定义的key,我们的MapReduce程序已经完成了二次排序的功能。

扩展:如何实现多次排序

其实如果上面的程序能够理解清楚的话,多次排序的思路应该也是很自然就可以想到的,因为比较的规则其实是在key中定义的,而对于Map来说,是依据key来进行排序的,所以如果需要进行多次排序,我们就可以在自定义的key的compareTo方法中来实现多次排序的规则,有兴趣的朋友可以自行写出这样的程序,这里就不再说明。

你可能感兴趣的:(MapReduce程序之二次排序与多次排序)