S∈A∪ B ,对于所有的i,j∈ S ,i 和 j 是朋友
由于落后的古代,没有电脑这个也就成了每年最大的难题,而你能帮他们求出最大朋 友圈的人数吗?
【数据范围】
两类数据
第一类:|A|<=200 |B| <= 200
第二类:|A| <= 10 |B| <= 3000
最大团等于补图的最大点独立集,所以我们建立出原图的补图。
观察发现,A国的奇数点是一个完全图,偶数点是一个完全图,所以A国中最多能选两个人。B国的奇数点之间没有边,偶数点之间没有边,所以B国构成一个二分图。
于是我们就可以枚举A国的选择情况(要分不选、选一个、选两个),相应就会得到B国能选择的一些人,然后在B国的这些人中求二分图的最大独立集。
#include
#include
#include
#include
#include
#include
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 3005
#define maxm 5000005
using namespace std;
int na,nb,m,ans,tot,cnt,now;
int a[maxn],b[maxn],p[maxn],match[maxn],head[maxn];
bool g[maxn][maxn],tag[maxn],vst[maxn];
struct edge_type{int next,to;}e[maxm];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y)
{
e[++cnt]=(edge_type){head[x],y};head[x]=cnt;
}
inline bool dfs(int x)
{
if (!tag[x]) return false;
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (tag[y]&&!vst[y])
{
vst[y]=true;
if (match[y]==0||dfs(match[y]))
{
match[y]=x;
return true;
}
}
}
return false;
}
int main()
{
na=read();nb=read();m=read();
F(i,1,na) a[i]=read();
F(i,1,nb) b[i]=read();
F(i,1,m)
{
int x=read(),y=read();
g[x][y]=true;
}
F(i,1,nb) if (b[i]%2==1)
{
p[++tot]=i;
F(j,1,nb) if (b[j]%2==0)
{
int tmp=b[i]|b[j],sum=0;
for(;tmp;tmp>>=1) if (tmp&1) sum++;
if (sum%2==0) add_edge(i,j);
}
}
F(i,1,nb) tag[i]=true;
memset(match,0,sizeof(match));
now=0;
F(i,1,tot)
{
memset(vst,false,sizeof(vst));
if (dfs(p[i])) now++;
}
ans=nb-now;
F(i,1,na)
{
memset(tag,false,sizeof(tag));
memset(match,0,sizeof(match));
int sum=0;
F(j,1,nb) if (g[i][j]) tag[j]=true,sum++;
now=0;
F(j,1,tot)
{
memset(vst,false,sizeof(vst));
if (tag[p[j]]&&dfs(p[j])) now++;
}
ans=max(ans,sum-now+1);
}
F(i,1,na) if (a[i]%2==1) F(j,1,na) if (a[j]%2==0)
{
memset(tag,false,sizeof(tag));
memset(match,0,sizeof(match));
int sum=0;
F(k,1,nb) if (g[i][k]&&g[j][k]) tag[k]=true,sum++;
now=0;
F(k,1,tot)
{
memset(vst,false,sizeof(vst));
if (tag[p[k]]&&dfs(p[k])) now++;
}
ans=max(ans,sum-now+2);
}
printf("%d\n",ans);
}