- Kafka 消费者组再平衡优化实践指南
一、Kafkarebalance原理与影响原理消费者通过subscribe(topics)向协调器(GroupCoordinator)注册组成员。协调器根据partition.assignment.strategy(默认StickyAssignor)自动分配各消费者的分区列表。每次成员加入/离开,都会经历:REVOKE:撤销旧的分区分配ASSIGN:重新分配所有分区期间所有消费者的poll()会被
- 【面试题】为什么kafka的吞吐量这么高
oraen
面试系列kafka分布式
我们总结一下为什么kafka的吞吐量高核心:顺序写+零拷贝+批处理一数据模型简单+顺序读写磁盘1kafka的数据存储本质上使用的是Append-only日志模型,数据写入和读取是顺序的,不需要复杂索引或随机写,大大简化了写路径,2消息以顺序追加方式写入磁盘,避免了随机写,而且顺序写入能够更高效地配合操作系统的页缓存,进一步提升写的性能。3消息的消费也是顺序读取的,顺序读取硬盘数据再配合内存映射大大
- Spring for kafka系列——1、快速浏览
虾条_花吹雪
SpringforApacheKafkaSpringkafka
先决条件:您必须安装并运行ApacheKafka。然后,您必须将SpringforApacheKafka(SpringKafka)JAR及其所有依赖项放在类路径上。最简单的方法是在构建工具中声明依赖关系。如果您没有使用SpringBoot,请在项目中将Springkafka-jar声明为依赖项。org.springframework.kafkaspring-kafka3.3.7使用SpringBo
- 6,Receiving Messages:@KafkaListener Annotation
@KafkaListener注释用于将bean方法指定为侦听器容器的侦听器。bean被包装在一个配置了各种功能的MessagingMessageListenerAdapter中,例如在必要时转换数据以匹配方法参数的转换器。您可以使用#{…}或属性占位符(${…})使用SpEL配置注释上的大多数属性。有关更多信息,请参阅Javadoc。RecordListeners@KafkaListener注释为
- 2、Connecting to Kafka
虾条_花吹雪
SpringforApacheKafkakafka分布式ai
KafkaAdmin-请参阅配置主题ProducerFactory-请参阅发送消息ConsumerFactory-请参阅接收消息从2.5版本开始,每个版本都扩展了KafkaResourceFactory。这允许在运行时通过向引导服务器的配置中添加Supplier来更改引导服务器:setBootstrapServersSupplier(()->…)。所有新连接都将调用此命令以获取服务器列表。消费者和
- Kafka-python 核心 API 深度解析:BrokerConnection 与 ClusterMetadata 的全方位指南
佑瞻
python工程化kafkapython分布式
在Kafka应用开发中,我们时常会面临连接管理混乱、元数据获取不及时等问题,这些问题的根源往往在于对底层API的理解不够深入。今天我们将聚焦kafka-python客户端中两个核心类——BrokerConnection和ClusterMetadata,通过剖析其核心功能与应用场景,帮助大家建立系统化的Kafka连接与元数据管理知识体系。BrokerConnection:Kafka连接管理的中枢神经
- KafkaAdminClient 技术详解:Python 操作 Kafka 集群的管理接口
佑瞻
python工程化pythonkafka
一、KafkaAdminClient基础概念KafkaAdminClient是kafka-python客户端提供的集群管理类,用于通过编程方式管理Kafka集群资源。其核心定位是为开发者提供一套标准化接口,实现对主题、分区、ACL、消费者组等资源的全生命周期管理。核心特性说明:接口定位:专门用于集群资源管理,区别于KafkaConsumer/KafkaProducer的数据读写功能版本要求:要求B
- 深入解析Spring Boot与Kafka集成:构建高效消息驱动应用
深入解析SpringBoot与Kafka集成:构建高效消息驱动应用引言在现代分布式系统中,消息队列技术扮演着至关重要的角色。ApacheKafka作为一款高性能、分布式的消息队列系统,被广泛应用于实时数据处理、日志收集、事件驱动架构等场景。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高效的消息驱动应用。1.Kafka简介ApacheKafka是一个分布式流处理平台,具有高吞吐
- 深入解析Spring Boot与Kafka集成:构建高效消息驱动微服务
Uranus^
JavaSpringBootKafka微服务消息队列
深入解析SpringBoot与Kafka集成:构建高效消息驱动微服务引言在现代微服务架构中,消息队列扮演着至关重要的角色,尤其是在处理高并发、异步通信和解耦系统组件时。ApacheKafka作为一款高性能的分布式消息队列系统,被广泛应用于实时数据处理和事件驱动架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高效的消息驱动微服务。1.Kafka简介ApacheKafka是一
- 深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
Uranus^
JavaSpringBootKafka消息队列分布式系统
深入解析SpringBoot与Kafka集成:构建高性能消息驱动应用引言在现代分布式系统中,消息队列是实现异步通信和解耦的关键组件之一。ApacheKafka作为一种高性能、分布式的消息队列系统,被广泛应用于大数据处理、实时流处理以及事件驱动的架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高性能的消息驱动应用。Kafka简介ApacheKafka是一个分布式流处理平台,
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费传递是通过**消费者(Consumer)和消费者组(ConsumerGroup)**的机制来实现的。以下是Kafka消息消费传递的详细过程:1.Kafka的基本结构Kafka由生产者(Producer)、消费者
- 【Note】《Kafka: The Definitive Guide》第6章:Kafka 的可靠数据投递机制,理解消息系统中的交付语义
CodeWithMe
中间件读书笔记kafka分布式
《Kafka:TheDefinitiveGuide》第6章:Kafka的可靠数据投递机制,理解消息系统中的交付语义在构建分布式系统时,数据是否成功送达?是否会丢失?是否会重复?这些都是架构师必须面对的核心问题。Kafka被广泛应用于金融、监控、日志、交易、IoT等对可靠性要求极高的场景,那么它是如何保障消息交付可靠性的?本章将深入解析Kafka的消息投递语义、失败处理机制、幂等性与事务支持,从而理
- 【Note】《Kafka: The Definitive Guide》 第5章:深入 Kafka 内部结构,理解分布式日志系统的核心奥秘
《Kafka:TheDefinitiveGuide》第5章:深入Kafka内部结构,理解分布式日志系统的核心奥秘ApacheKafka在表面上看似只是一个“分布式消息队列”,但其背后的存储架构、分区机制、复制策略与高性能设计,才是它在千万级TPS场景中立足的根本。一、Kafka的核心逻辑结构Kafka是一个分布式日志服务(distributedcommitlog),核心概念有以下几类:TopicK
- 【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
CodeWithMe
读书笔记中间件kafka分布式
《Kafka:TheDefinitiveGuide》第三章:Kafka生产者深入解析:如何高效写入Kafka消息队列Kafka已经成为现代分布式系统中不可或缺的核心组件,尤其是在微服务、事件驱动架构与实时流处理领域。作为Kafka使用的第一步,生产者(Producer)负责将消息写入Kafka,这个过程背后有哪些关键机制?如何实现高可靠、高性能的写入?什么是KafkaProducer?KafkaP
- Java自定义类热加载实现原理与实践
weixin_ab
#类的加载机制java类加载
Java自定义类热加载实现原理与实践在Java开发中,类热加载(ClassReloading)指在程序运行时动态替换已加载的类,避免重启应用。核心原理是通过自定义类加载器打破JVM类加载的固有规则,实现类的动态加载与更新。以下从实现原理、核心步骤、代码示例到生产实践展开详细解析。一、热加载核心原理:突破类加载机制限制1.类加载器的隔离性每个类加载器维护独立的命名空间,相同类名的类由不同加载器加载会
- Kafka系列之:不删除Kafka Topic,清理Kafka Topic中的数据
快乐骑行^_^
KafkaKafka系列不删除KafkaTopic清理KafkaTopic数据
Kafka系列之:不删除KafkaTopic,清理KafkaTopic中的数据一、需求二、Java删除Topic中数据三、python删除Topic中数据一、需求需要清理topic中的数据但是不能通过删除topic删除数据,则采取基于topic的offset删除topic中的数据二、Java删除Topic中数据HashMapdeleteRecords=newHashMap<>();这一行创建了一个
- Kafka Controller 元数据解析与故障恢复实战指南
磐基Stack专业服务团队
Kafkakafkalinq分布式
#作者:张桐瑞文章目录1生产案例:Controller选举在故障恢复中的关键作用1.1问题背景1.2核心操作原理:2Controller元数据全景:从ZooKeeper到内存的数据镜像2.1元数据核心载体:ControllerContext类2.2核心元数据深度解析1生产案例:Controller选举在故障恢复中的关键作用1.1问题背景某Kafka集群部分核心主题分区一直处于“不可用”状态,通过k
- Kafka
小熊哥^--^
kafka分布式
一、什么是Kafka?Kafka的主要用途?Kafka是一个分布式流处理平台,是Apache的一个顶级项目,它被设计用于高吞吐量,分布式、持久性的数据流处理。Kafka实现了一套非常高效的一种发布订阅模型,应用场景非常广泛,比如日志聚合(收集日志)、数据流处理、数据仓库集成(传输数据到数据仓库)、应用程序集成(作为消息中间件来实现异步通信)、流媒体处理(列如实时监控,事件驱动的应用程序)二、top
- 3、Configuring Topics
如果您在应用程序上下文中定义了KafkaAdminbean,它可以自动向代理添加主题。为此,您可以将每个主题的NewTopic@Bean添加到应用程序上下文中。2.3版本引入了一个新的类TopicBuilder,使创建此类bean更加方便。以下示例显示了如何执行此操作:@BeanpublicKafkaAdminadmin(){Mapconfigs=newHashMap,用于确定是否应考虑创建或修改
- 【Note】《Kafka: The Definitive Guide》 第二章 Installing Kafka:Kafka 安装与运行
《Kafka:TheDefinitiveGuide》第二章InstallingKafka:Kafka安装与运行本章核心目标是教读者如何在本地搭建Kafka,包括依赖安装、启动服务、测试运行等操作。一、Kafka的依赖与基本结构1.Kafka的核心组成Kafka并不是一个单独运行的进程,它依赖以下两个核心组件:组件作用ZooKeeperKafka用于存储元数据(如broker注册信息、control
- Kafka “假死“现象深度解析与解决方案
一、什么是Kafka假死现象?Kafka假死(也称为"僵死"或"挂起")是指Kafka集群或Broker在表面上进程仍在运行,但实际上已经停止响应或处理能力极度下降的状态。典型表现包括:生产者消息无法写入(超时)消费者无法拉取消息管理API无响应监控指标停止更新但进程仍在系统进程中可见二、假死的根本原因分析1.磁盘I/O瓶颈典型场景:磁盘写满(特别是日志目录)磁盘性能达到瓶颈(RAID卡缓存策略不
- MySQL CDC与Kafka整合指南:构建实时数据管道的完整方案
亲爱的非洲野猪
mysqlkafka数据库
一、引言:现代数据架构的实时化需求在数字化转型浪潮中,实时数据已成为企业的核心资产。传统批处理ETL(每天T+1)已无法满足以下场景需求:实时风险监控(金融交易)即时个性化推荐(电商)物联网设备状态同步微服务间数据一致性本文将深入探讨如何通过MySQLCDC与Kafka的整合,构建高效可靠的实时数据管道。二、技术选型:三大CDC工具深度对比功能矩阵比较特性DebeziumCanalMaxWell多
- Kafka消费者分区分配机制与生产环境配置指南
引言在分布式系统中,Kafka作为高性能消息队列被广泛应用。本文将深入探讨Kafka消费者的分区分配机制,分析不同分配策略的优劣,并提供生产环境中的最佳配置实践。我们还将详细解析消费者常见问题的排查方法,特别是消费者未分配到分区的情况。一、Kafka消费者分区分配机制1.1基础分配原则Kafka通过消费者组(ConsumerGroup)机制实现消息的并行处理。核心规则包括:消费者组隔离:不同消费者
- 数据分析全流程:从收集到可视化的高效实战
晨曦543210
python
1.数据收集来源:数据库、API、传感器、日志文件、社交媒体、问卷调查等。工具:Python(requests、Scrapy)、SQL、Excel、Kafka(实时流数据)。2.数据清洗处理缺失、重复、错误或不一致的数据:缺失值:删除、填充(均值/中位数/众数)、插值或预测。异常值:使用箱线图、Z-score或IQR方法检测并处理。格式标准化:统一日期、单位、文本格式(如大小写、去除空格)。去重:
- Golang 与 Kafka 的协同:优化消息处理流程
Golang编程笔记
golangkafkalinqai
Golang与Kafka的协同:优化消息处理流程关键词:Golang、Kafka、消息队列、并发处理、性能优化、消费者组、异步通信摘要:本文将带你探索如何用Golang的“轻量级并发魔法”与Kafka的“高吞吐量消息引擎”协同工作,优化消息处理流程。我们会从基础概念到实战案例,用“快递站分包裹”“餐厅传菜”等生活场景类比,一步步拆解技术细节,最终掌握如何让这对“黄金组合”高效处理百万级消息。背景介
- 2025年Java后端岗互联网大厂技术场景题的总结(附100w字面试题)
小凡敲代码
javajava后端java面试Java面试题互联网大厂求职Java场景题
一、高并发与分布式系统设计1.百万级QPS秒杀系统问题:如何设计支持瞬时高并发的秒杀系统?解决方案:Redis预减库存:使用Lua脚本保证原子性操作,防止超卖。异步下单:通过MQ(如Kafka/RocketMQ)削峰,降低数据库压力。限流降级:Sentinel/Nginx限流,防止恶意请求。热点数据隔离:独立Redis集群存储秒杀商品数据。2.分布式事务一致性问题:跨服务下单如何保证数据一致性?方
- 25年最新Java后端社招场景项目题总结!(附100w字面试题)
小凡敲代码
javajava面试Java面试题Java场景题程序员互联网大厂计算机
一、高并发与分布式系统设计百万级QPS秒杀系统核心问题:如何解决超卖、库存一致性、高并发请求?技术方案:Redis预减库存+异步扣减(Kafka/RocketMQ)分布式锁(Redisson)或乐观锁(CAS)限流策略(Nginx/Sentinel)扩展:热点数据隔离(独立Redis集群)、风控防刷(IP限流、验证码)。分布式文件存储系统(类似GFS)需求:支持海量文件存储、高可用、快速检索。关键
- 站酷基于服务网格ASM的生产实践
作者:服务网格ASM背景介绍站酷(ZCOOL)2006年8月创立于北京,深耕设计领域多年,聚集了1500万设计师、摄影师、插画师、艺术家、创意人,在设计创意群体中具有一定的影响力与号召力。站酷在创立之初,就以“让设计更有价值”为自身使命,多年来,一直致力于打造以原创设计为核心的“站酷原创版权生态体系”。目前站酷旗下除拥有主站设计师互动平台「站酷网」之外,还重点打磨了一站式正版视觉内容交易平台——「
- 使用canal同步mysql增量数据至rocketmq
使用canal同步mysql增量数据至rocketmq组件版本canal1.1.5rocketmq4.9.2mysql5.7zk3.5.6canal使用参考地址:https://github.com/alibaba/canal主要配置如下:canal.properties:#tcp,kafka,rocketMQ,rabbitMQcanal.serverMode=rocketMQ#数据库名称cana
- canal同步mysql到kafka_使用Canal同步MySQL数据到Kafka 得到的数据中sql字段无值-问答-阿里云开发者社区-阿里云...
又可乐
这个应该跟你的binlog记录模式有关系,binlog有3中模式,ROW(行模式),Statement(语句模式),Mixed(混合模式)三种模式的用法如下:ROW(行模式):记录那条数据修改了,注意:记录的是这条记录的全部数据,即使只更新了一个字段,binlog里也会记录所有字段的数据优点:他不记录sql语句的上下文信息,日志内容会非常清楚的记录每条数据详细的变更细节,即使只更新了一个字段,bi
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,