五种典型的递推关系——一步一步算法篇

五种典型的递推关系

1.Fibonacci数列

所有的递推关系中,Fibonacci数列应该是最为大家所熟悉的。在最基础的程序设计语言Logo语言中,就有很多这类的题目。而在较为复杂的Basic、Pascal、C语言中,Fibonacci数列类的题目因为解法相对容易一些,逐渐退出了竞赛的舞台。可是这不等于说Fibonacci数列没有研究价值,恰恰相反,一些此类的题目还是能给我们一定的启发的。
Fibonacci数列的代表问题是由意大利著名数学家Fibonacci于1202年提出的“兔子繁殖问题”(又称“Fibonacci问题”)。
问题的提出:有雌雄一对兔子,假定过两个月便可繁殖雌雄各一的一对小兔子。问过n个月后共有多少对兔子?
  :设满x个月共有兔子Fx对,其中当月新生的兔子数目为Nx对。第x-1个月留下的兔子数目设为Fx-1对。则:
Fx=Nx+ Fx-1
   Nx=Fx-2 (即第x-2个月的所有兔子到第x个月都有繁殖能力)
   ∴ Fx=Fx-1+Fx-2 边界条件:F0=0,F1=1
由上面的递推关系可依次得到:
   F2=F1+F0=1,F3=F2+F1=2,F4=F3+F2=3,F5=F4+F3=5,……。
Fabonacci数列常出现在比较简单的组合计数问题中,例如以前的竞赛中出现的“骨牌覆盖”问题。在优选法中,Fibonacci数列的用处也得到了较好的体现。

2.Hanoi塔问题

问题的提出:Hanoi塔由n个大小不同的圆盘和三根木柱a,b,c组成。开始时,这n个圆盘由大到小依次套在a柱上,如图3-11所示。
要求把a柱上n个圆盘按下述规则移到c柱上:
五种典型的递推关系——一步一步算法篇_第1张图片
  (1)一次只能移一个圆盘;
  (2)圆盘只能在三个柱上存放;
  (3)在移动过程中,不允许大盘压小盘。
  问将这n个盘子从a柱移动到c柱上,总计需要移动多少个盘次?
  
:设hn为n个盘子从a柱移到c柱所需移动的盘次。显然,当n=1时,只需把a 柱上的盘子直接移动到c柱就可以了,故h1=1。当n=2时,先将a柱上面的小盘子移动到b柱上去;然后将大盘子从a柱移到c 柱;最后,将b柱上的小盘子移到c柱上,共记3个盘次,故h2=3。以此类推,当a柱上有n(n2)个盘子时,总是先借助c柱把上面的n-1个盘子移动到b柱上,然后把a柱最下面的盘子移动到c柱上;再借助a柱把b柱上的n-1个盘子移动到c柱上;总共移动hn-1+1+hn-1个盘次。
   ∴hn=2hn-1+1 边界条件:h1=1

3.平面分割问题

问题的提出:设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
:设an为n条封闭曲线把平面分割成的区域个数。 由图3-13可以看出:a2-a1=2;a3-a2=4;a4-a3=6。
五种典型的递推关系——一步一步算法篇_第2张图片
这些式子中可以看出an-an-1=2(n-1)。当然,上面的式子只是我们通过观察4幅图后得出的结论,它的正确性尚不能保证。下面不妨让我们来试着证明一下。当平面上已有n-1条曲线将平面分割成an-1个区域后,第n-1条曲线每与曲线相交一次,就会增加一个区域,因为平面上已有了n-1条封闭曲线,且第n条曲线与已有的每一条闭曲线恰好相交于两点,且不会与任两条曲线交于同一点,故平面上一共增加2(n-1)个区域,加上已有的an-1个区域,一共有an-1+2(n-1)个区域。所以本题的递推关系是an=an-1+2(n-1),边界条件是a1=1。
平面分割问题是竞赛中经常触及到的一类问题,由于其灵活多变,常常感到棘手,下面的例8是另一种平面分割问题,有兴趣的读者不妨自己先试着求一下其中的递推关系。

4.Catalan数

Catalan数首先是由Euler在精确计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,它经常出现在组合计数问题中。
问题的提出:在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数目用hn表示,hn即为Catalan数。例如五边形有如下五种拆分方案(图3-14),故h5=5。求对于一个任意的凸n边形相应的hn。

这里写图片描述

五种典型的递推关系——一步一步算法篇_第3张图片

Catalan数是比较复杂的递推关系,尤其在竞赛的时候,选手很难在较短的时间里建立起正确的递推关系。当然,Catalan数类的问题也可以用搜索的方法来完成,但是,搜索的方法与利用递推关系的方法比较起来,不仅效率低,编程复杂度也陡然提高。

第二类Stirling数

五类典型的递推关系中,第二类Stirling是最不为大家所熟悉的。也正因为如此,我们有必要先解释一下什么是第二类Strling数。
**【定义2】**n个有区别的球放到m个相同的盒子中,要求无一空盒,其不同的方案数用S(n,m)表示,称为第二类Stirling数。
下面就让我们根据定义来推导带两个参数的递推关系——第二类Stirling数。
:设有n个不同的球,分别用b1,b2,……bn表示。从中取出一个球bn,bn的放法有以下两种:
   ①bn独自占一个盒子;那么剩下的球只能放在m-1个盒子中,方案数为S2(n-1,m-1);
   ②bn与别的球共占一个盒子;那么可以事先将b1,b2,……bn-1这n-1个球放入m个盒子中,然后再将球bn可以放入其中一个盒子中,方案数为mS2(n-1,m)。
综合以上两种情况,可以得出第二类Stirling数定理:
    【定理】S2(n,m)=mS2(n-1,m)+S2(n-1,m-1) (n>1,m1)
边界条件可以由定义2推导出:
    S2(n,0)=0;S2(n,1)=1;S2(n,n)=1;S2(n,k)=0(k>n)
第二类Stirling数在竞赛中较少出现,但在竞赛中也有一些题目与其类似,甚至更为复杂。读者不妨自己来试着建立其中的递推关系。

小结:通过上面对五种典型的递推关系建立过程的探讨,可知对待递推类的题目,要具体情况具体分析,通过找到某状态与其前面状态的联系,建立相应的递推关系。


一步一步算法篇

你可能感兴趣的:(基础)