python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离

之前提到过聚类之后,聚类质量的评价:
聚类︱python实现 六大 分群质量评估指标(兰德系数、互信息、轮廓系数)
R语言相关分类效果评估:
R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F1,mAP、ROC曲线)

.


文章目录

  • 一、acc、recall、F1、混淆矩阵、分类综合报告
    • 1、准确率
      • **第一种方式:accuracy_score**
      • **第二种方式:metrics**
    • 其中average参数有五种:(None, 'micro', 'macro', 'weighted', 'samples') . 2、召回率
    • . 3、F1
    • . 4、混淆矩阵
    • 横为true label 竖为predict ![这里写图片描述](http://scikit-learn.org/stable/_images/sphx_glr_plot_confusion_matrix_0011.png) . 5、 分类报告
    • 包含:precision/recall/fi-score/均值/分类个数 . 6、 kappa score
  • 二、ROC
    • 1、计算ROC值
    • 2、ROC曲线
  • 三、距离
    • . 1、海明距离
    • . 2、Jaccard距离
  • 四、回归
    • 1、 可释方差值(Explained variance score)
    • . 2、 平均绝对误差(Mean absolute error)
    • . 3、 均方误差(Mean squared error)
    • . 4、中值绝对误差(Median absolute error)
    • 5、 R方值,确定系数
  • 五 合理的进行绘图(混淆矩阵/ROC)
    • 参考文献:


一、acc、recall、F1、混淆矩阵、分类综合报告

1、准确率

第一种方式:accuracy_score

# 准确率
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3,9,9,8,5,8]
y_true = [0, 1, 2, 3,2,6,3,5,9]

accuracy_score(y_true, y_pred)
Out[127]: 0.33333333333333331

accuracy_score(y_true, y_pred, normalize=False) # 类似海明距离,每个类别求准确后,再求微平均
Out[128]: 3

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

第二种方式:metrics

宏平均比微平均更合理,但也不是说微平均一无是处,具体使用哪种评测机制,还是要取决于数据集中样本分布

宏平均(Macro-averaging),是先对每一个类统计指标值,然后在对所有类求算术平均值。
微平均(Micro-averaging),是对数据集中的每一个实例不分类别进行统计建立全局混淆矩阵,然后计算相应指标。(来源:谈谈评价指标中的宏平均和微平均)

from sklearn import metrics
metrics.precision_score(y_true, y_pred, average='micro')  # 微平均,精确率
Out[130]: 0.33333333333333331

metrics.precision_score(y_true, y_pred, average=‘macro’) # 宏平均,精确率
Out[131]: 0.375

metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average=‘macro’) # 指定特定分类标签的精确率
Out[133]: 0.5

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

2_52" target="_blank">其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’)

.

2、召回率

metrics.recall_score(y_true, y_pred, average='micro')
Out[134]: 0.33333333333333331

metrics.recall_score(y_true, y_pred, average='macro')
Out[135]: 0.3125

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5

.
3、F1

metrics.f1_score(y_true, y_pred, average='weighted')  
Out[136]: 0.37037037037037035

  • 1
  • 2
  • 3

.
4、混淆矩阵

# 混淆矩阵
from sklearn.metrics import confusion_matrix
confusion_matrix(y_true, y_pred)

Out[137]:
array([[1, 0, 0, …, 0, 0, 0],
[0, 0, 1, …, 0, 0, 0],
[0, 1, 0, …, 0, 0, 1],
…,
[0, 0, 0, …, 0, 0, 1],
[0, 0, 0, …, 0, 0, 0],
[0, 0, 0, …, 0, 1, 0]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

5__91" target="_blank">横为true label 竖为predict



.

5、 分类报告

# 分类报告:precision/recall/fi-score/均值/分类个数
 from sklearn.metrics import classification_report
 y_true = [0, 1, 2, 2, 0]
 y_pred = [0, 0, 2, 2, 0]
 target_names = ['class 0', 'class 1', 'class 2']
 print(classification_report(y_true, y_pred, target_names=target_names))

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

其中的结果:

             precision    recall  f1-score   support
class 0       0.67      1.00      0.80         2
class 1       0.00      0.00      0.00         1
class 2       1.00      1.00      1.00         2

avg / total 0.67 0.80 0.72 5

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

6_kappa_score_115" target="_blank">包含:precision/recall/fi-score/均值/分类个数

.

6、 kappa score

kappa score是一个介于(-1, 1)之间的数. score>0.8意味着好的分类;0或更低意味着不好(实际是随机标签)

 from sklearn.metrics import cohen_kappa_score
 y_true = [2, 0, 2, 2, 0, 1]
 y_pred = [0, 0, 2, 2, 0, 2]
 cohen_kappa_score(y_true, y_pred)

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.


二、ROC

1、计算ROC值

import numpy as np
 from sklearn.metrics import roc_auc_score
 y_true = np.array([0, 0, 1, 1])
 y_scores = np.array([0.1, 0.4, 0.35, 0.8])
 roc_auc_score(y_true, y_scores)

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5

2、ROC曲线

 y = np.array([1, 1, 2, 2])
 scores = np.array([0.1, 0.4, 0.35, 0.8])
 fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)

   
   
   
   
  • 1
  • 2
  • 3

来看一个官网例子,贴部分代码,全部的code见:Receiver Operating Characteristic (ROC)

import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp

Import some data to play with

iris = datasets.load_iris()
X = iris.data
y = iris.target

画图

all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

Then interpolate all ROC curves at this points

mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])

Finally average it and compute AUC

mean_tpr /= n_classes

fpr[“macro”] = all_fpr
tpr[“macro”] = mean_tpr
roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])

Plot all ROC curves

plt.figure()
plt.plot(fpr[“micro”], tpr[“micro”],
label=‘micro-average ROC curve (area = {0:0.2f})’
‘’.format(roc_auc[“micro”]),
color=‘deeppink’, linestyle=’:’, linewidth=4)

plt.plot(fpr[“macro”], tpr[“macro”],
label=‘macro-average ROC curve (area = {0:0.2f})’
‘’.format(roc_auc[“macro”]),
color=‘navy’, linestyle=’:’, linewidth=4)

colors = cycle([‘aqua’, ‘darkorange’, ‘cornflowerblue’])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label=‘ROC curve of class {0} (area = {1:0.2f})’
‘’.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], ‘k–’, lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(‘False Positive Rate’)
plt.ylabel(‘True Positive Rate’)
plt.title(‘Some extension of Receiver operating characteristic to multi-class’)
plt.legend(loc=“lower right”)
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

.


三、距离

.
1、海明距离

from sklearn.metrics import hamming_loss
 y_pred = [1, 2, 3, 4]
 y_true = [2, 2, 3, 4]
 hamming_loss(y_true, y_pred)
0.25

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5

.
2、Jaccard距离

 import numpy as np
 from sklearn.metrics import jaccard_similarity_score
 y_pred = [0, 2, 1, 3,4]
 y_true = [0, 1, 2, 3,4]
 jaccard_similarity_score(y_true, y_pred)
0.5
 jaccard_similarity_score(y_true, y_pred, normalize=False)
2

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

.


四、回归

1、 可释方差值(Explained variance score)

 from sklearn.metrics import explained_variance_score
y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 explained_variance_score(y_true, y_pred)  

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.
2、 平均绝对误差(Mean absolute error)

from sklearn.metrics import mean_absolute_error
 y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 mean_absolute_error(y_true, y_pred)

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.
3、 均方误差(Mean squared error)

 from sklearn.metrics import mean_squared_error
 y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 mean_squared_error(y_true, y_pred)

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.
4、中值绝对误差(Median absolute error)

 from sklearn.metrics import median_absolute_error
 y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 median_absolute_error(y_true, y_pred)

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.

5、 R方值,确定系数

 from sklearn.metrics import r2_score
 y_true = [3, -0.5, 2, 7]
 y_pred = [2.5, 0.0, 2, 8]
 r2_score(y_true, y_pred)  

   
   
   
   
  • 1
  • 2
  • 3
  • 4

.


五 合理的进行绘图(混淆矩阵/ROC)

%matplotlib inline 
import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score,accuracy_score,recall_score,classification_report,confusion_matrix

def plot_confusion_matrix(cm, classes,
normalize=False,
title=‘Confusion matrix’,
cmap=plt.cm.Blues):
“”"
This function prints and plots the confusion matrix.
Normalization can be applied by setting normalize=True.
“”"
if normalize:
cm = cm.astype(‘float’) / cm.sum(axis=1)[:, np.newaxis]
print(“Normalized confusion matrix”)
else:
print(‘Confusion matrix, without normalization’)

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
    plt.text(j, i, format(cm[i, j], fmt),
             horizontalalignment="center",
             color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')

def CalculationResults(val_y,y_val_pred,simple = False,
target_names = [‘class_-2_Not_mentioned’,‘class_-1_Negative’,‘class_0_Neutral’,‘class_1_Positive’]):
# 计算检验
F1_score = f1_score(val_y,y_val_pred, average=‘macro’)
if simple:
return F1_score
else:
acc = accuracy_score(val_y,y_val_pred)
recall_score_ = recall_score(val_y,y_val_pred, average=‘macro’)
confusion_matrix_ = confusion_matrix(val_y,y_val_pred)
class_report = classification_report(val_y, y_val_pred, target_names=target_names)
print(‘f1_score:’,F1_score,‘ACC_score:’,acc,‘recall:’,recall_score_)
print(’\n----class report —:\n’,class_report)
#print(’----confusion matrix —:\n’,confusion_matrix_)

    # 画混淆矩阵
        # 画混淆矩阵图
    plt.figure()
    plot_confusion_matrix(confusion_matrix_, classes=target_names,
                          title='Confusion matrix, without normalization')
    plt.show()
    return F1_score,acc,recall_score_,confusion_matrix_,class_report

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

函数plot_confusion_matrix是绘制混淆矩阵的函数,CalculationResults则为只要给入y的预测值 + 实际值,以及分类的标签大致内容,就可以一次性输出:f1值,acc,recall以及报表

输出结果的部分,如下:

f1_score: 0.6111193724134587 ACC_score: 0.9414 recall: 0.5941485524896096

----class report —:
precision recall f1-score support

class_-2_Not_mentioned 0.96 0.97 0.97 11757
class_-1_Negative 0.68 0.51 0.58 182
class_0_Neutral 1.00 0.01 0.01 136
class_1_Positive 0.87 0.89 0.88 2925

       avg / total       0.94      0.94      0.94     15000

Confusion matrix, without normalization
[[11437 27 0 293]
[ 72 93 0 17]
[ 63 10 1 62]
[ 328 7 0 2590]]

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17


参考文献:

sklearn中的模型评估

        

你可能感兴趣的:(python)