李航.统计学习方法笔记+Python实现(2)第二章 感知机(perceptron)

第二章 感知机(perceptron)


感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。

感知机对应于输入空间(特征空间)中将实力划分为正负两类的分离超平面,属于判别模型。

函数: f ( x ) = s i g n ( w ∗ x + b ) f(x) = sign(w*x + b) f(x)=sign(wx+b)

损失函数 : L ( w , b ) = − Σ y i ( w ∗ x i + b ) L(w, b) = -\Sigma{y_{i}(w*x_{i} + b)} L(w,b)=Σyi(wxi+b)


算法

随即梯度下降法 Stochastic Gradient Descent

随机抽取一个误分类点使其梯度下降。

w = w + η y i x i w = w + \eta y_{i}x_{i} w=w+ηyixi

b = b + η y i b = b + \eta y_{i} b=b+ηyi

当实例点被误分类,即位于分离超平面的错误侧,则调整w, b的值,使分离超平面向该无分类点的一侧移动,直至误分类点被正确分类

%matplotlib inline
#IPython的内置magic函数,可以省掉plt.show(),在其他IDE中是不会支持的
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid",color_codes=True)
from sklearn.datasets import load_iris
# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
df.head()
sepal length sepal width petal length petal width label
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

李航.统计学习方法笔记+Python实现(2)第二章 感知机(perceptron)_第1张图片

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
#将y转化为-1,+1
y = np.array([1 if i == 1 else -1 for i in y])

perceptron模型

# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:
    def __init__(self):
        self.w = np.ones(len(data[0])-1, dtype=np.float32)
        self.b = 0
        self.l_rate = 0.1
    
    def sign(self, x, w, b):
        y = np.dot(x, w) + b
        return y
    
    # 随机梯度下降法
    def fit(self, X_train, y_train):
        is_wrong = False
        while not is_wrong:
            wrong_count = 0
            for d in range(len(X_train)):
                X = X_train[d]
                y = y_train[d]
                if y * self.sign(X, self.w, self.b) <= 0:
                    self.w = self.w + self.l_rate*np.dot(y, X)
                    self.b = self.b + self.l_rate*y
                    wrong_count += 1
            if wrong_count == 0:
                is_wrong = True
        return 'Perceptron Model!'
        
    def score(self):
        pass
#训练
perceptron = Model()
perceptron.fit(X, y)
'Perceptron Model!'
x_points = np.linspace(4, 7,10)
y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1]
plt.plot(x_points, y_)
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

李航.统计学习方法笔记+Python实现(2)第二章 感知机(perceptron)_第2张图片

你可能感兴趣的:(李航.统计学习方法笔记+Python实现(2)第二章 感知机(perceptron))