首先,部署TensorRT进行推理,我们需要有一个训练好的网络,
需要它的网络结构文件*.prototxt
需要它的网络权值文件*caffemodel
我们要用一个cuda程序来部署,那么这个在TensorRT中的cuda程序如何编写呢,我们还是从TensorRT给的实例来分析
##simpleMNIST.cpp
###Part1 caffe model 到 TensorRT model的转换 -->gieModelStream
// create a GIE model from the caffe model and serialize it to a stream
std::stringstream gieModelStream;
caffeToGIEModel("mnist.prototxt", "mnist.caffemodel", std::vector < std::string > { OUTPUT_BLOB_NAME }, 1, gieModelStream);
main函数 上来调用caffeToGIEModel函数 把caffe网络模型转化为GIE(即TensorRT)网络模型,并将其序列化,那么到底是如何操作的呢
//从入口参数也可以看得到,它需要caffe网络模型的 网络结构文件和网络权值文件,
//指定batchsize 最后是转换后的TensorRT model
void caffeToGIEModel(const std::string& deployFile, // name for caffe prototxt
const std::string& modelFile, // name for model
const std::vector& outputs, // network outputs
unsigned int maxBatchSize, // batch size - NB must be at least as large as the batch we want to run with)
std::ostream& gieModelStream) // output stream for the GIE model
{
// create the builder
IBuilder* builder = createInferBuilder(gLogger);
// parse the caffe model to populate the network, then set the outputs
INetworkDefinition* network = builder->createNetwork();
ICaffeParser* parser = createCaffeParser();
const IBlobNameToTensor* blobNameToTensor = parser->parse(locateFile(deployFile).c_str(),
locateFile(modelFile).c_str(),
*network,
DataType::kFLOAT);
// specify which tensors are outputs
for (auto& s : outputs)
network->markOutput(*blobNameToTensor->find(s.c_str()));
// Build the engine
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildCudaEngine(*network);
assert(engine);
// we don't need the network any more, and we can destroy the parser
network->destroy();
parser->destroy();
// serialize the engine, then close everything down
engine->serialize(gieModelStream);
engine->destroy();
builder->destroy();
shutdownProtobufLibrary();
}
//创建了一个builder,并利用builder创建一个createNetwork
//解析caffe model
//指明TensorRT的输出
//创建engine
//序列化engine
###Part2 输入 输入文件与均值文件作差 ---->data[INPUT_H*INPUT_W]
//因为这个实例是手写数字的识别,所以它随机产生了一个十以内的数字,并且print出来
//获取均值文件
//把均值文件与输入的文件作差
// read a random digit file
srand(unsigned(time(nullptr)));
uint8_t fileData[INPUT_H*INPUT_W];
readPGMFile(std::to_string(rand() % 10) + ".pgm", fileData);
// print an ascii representation
std::cout << "\n\n\n---------------------------" << "\n\n\n" << std::endl;
for (int i = 0; i < INPUT_H*INPUT_W; i++)
std::cout << (" .:-=+*#%@"[fileData[i] / 26]) << (((i + 1) % INPUT_W) ? "" : "\n");
// parse the mean file and subtract it from the image
ICaffeParser* parser = createCaffeParser();
IBinaryProtoBlob* meanBlob = parser->parseBinaryProto(locateFile("mnist_mean.binaryproto").c_str());
parser->destroy();
const float *meanData = reinterpret_cast(meanBlob->getData());
float data[INPUT_H*INPUT_W];
for (int i = 0; i < INPUT_H*INPUT_W; i++)
data[i] = float(fileData[i])-meanData[i];
meanBlob->destroy();
###Part3 反序列化引擎 得到---->IExecutionContext *context
// deserialize the engine
gieModelStream.seekg(0, gieModelStream.beg);
IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(gieModelStream);
IExecutionContext *context = engine->createExecutionContext();
//创建runtime
//反序列化引擎
//创建可执行上下文
###Part4 执行推理,输出结果----->doInference【context, data, prob, 1】—>prob
// run inference
float prob[OUTPUT_SIZE];
doInference(*context, data, prob, 1);
// destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
// print a histogram of the output distribution
std::cout << "\n\n";
for (unsigned int i = 0; i < 10; i++)
std::cout << i << ": " << std::string(int(std::floor(prob[i] * 10 + 0.5f)), '*') << "\n";
std::cout << std::endl;
//执行推理
//输出结果
所以着重看一下怎么执行推理的, doInference(*context, data, prob, 1);
从函数的入口参数也能看出,*context, data分别是Part3/2的结果 prob是最终的推理结果,batchsize创建GPU buffer CHECK(cudaMalloc(&buffers[inputIndex], batchSize *
INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE *
sizeof(float)));执行推理 cudaStream_t stream; CHECK(cudaStreamCreate(&stream));
// DMA the input to the GPU, execute the batch asynchronously, and
DMA it back: CHECK(cudaMemcpyAsync(buffers[inputIndex], input,
batchSize * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice,
stream)); context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize *
OUTPUT_SIZE*sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
{
const ICudaEngine& engine = context.getEngine();
// input and output buffer pointers that we pass to the engine - the engine requires exactly IEngine::getNbBindings(),
// of these, but in this case we know that there is exactly one input and one output.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// note that indices are guaranteed to be less than IEngine::getNbBindings()
int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME),
outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// create GPU buffers and a stream
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA the input to the GPU, execute the batch asynchronously, and DMA it back:
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE*sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// release the stream and the buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}