Python量化交易开源框架:AmazingQuant

Python量化交易开源框架:AmazingQuant_第1张图片

--  Illustrations by Daniel Liang --

1.简介

开源地址:

https://github.com/zhanggao2013/AmazingQuant

AmazingQuant是一款基于event-driven的量化回测交易开源框架,下图是总体框架架构。



Python量化交易开源框架:AmazingQuant_第2张图片

  • data_center

    • to_mongoDB 存放行情、财务等各种数据到MongoDB的存储模块

    • get_data   策略中从数据库中取数据的接口模块

  • trade_center

    • mossion_engine   包含下单任务(event_order)和风控(event_risk_management)两部分的engine,分别完成下单前的检查和风控

    • broker_engine    分为回测时的simulate的broker(主要是event_deal)撮合成交和连接实盘交易CTP、xSpeed等接口两部分

  • strategy_center

    • bar_engine       在回测或者交易模式下,用`逐K线`的方式执行每一根bar的交易逻辑,可在日线、分钟线、分笔下运行

  • analysis_center

    • analysis_engine  对回测形成的交易记录进行分析和可视化,净值、年化收益、alpha、beta、回撤等指标,brison、Fama等经典模型的实现

2.安装配置

  • MongoDB 3.4 

     建议使用shard,配置启动项示例

  • pymongo 

     python调用MongoDB

  • talib 

     技术指标计算库

  • anaconda 

     python 3.5 的版本,如果大于3.5的版本,ctp的接口暂时不能用,因为编译问题,后续可以解决

  • Linux Ubuntu 

     开发环境是ubuntu,当然也可以在windows下用,但是数据库的配置和ctp等交易接口需要重新做

  • 安装AmazingQuant

     pip install AmazingQuant  直接安装

3.策略编写

# -*- coding: utf-8 -*-

__author__ = "gao"

import numpy as np
import talib

# import strategy基类
from AmazingQuant.strategy_center.strategy import *

# import 交易模块
from AmazingQuant.trade_center.trade import Trade


# 继承strategy基类
class MaStrategy(StrategyBase):
    def initialize(self):
        # 设置运行模式,回测或者交易
        self.run_mode = RunMode.BACKTESTING.value
        # 设置回测资金账号
        self.account = ["test0""test1"]
        # 设置回测资金账号资金量
        self.capital = {"test0"2000000"test1"1000}
        # 设置回测基准
        self.benchmark = "000300.SH"
        # 设置复权方式
        self.rights_adjustment = RightsAdjustment.NONE.value
        # 设置回测起止时间
        self.start = "2015-01-11"
        self.end = "2016-01-16"
        # 设置运行周期
        self.period = "daily"
        # 设置股票池
        self.universe = ['000001.SZ''000002.SZ''000008.SZ''000060.SZ''000063.SZ''000069.SZ''000100.SZ',
                         '000157.SZ''000166.SZ''000333.SZ''000338.SZ''000402.SZ''000413.SZ''000415.SZ',
                         '000423.SZ''000425.SZ''000503.SZ''000538.SZ''000540.SZ''000559.SZ''000568.SZ',
                         '000623.SZ''000625.SZ''000627.SZ''000630.SZ''000651.SZ''000671.SZ''000686.SZ',
                         '000709.SZ''000723.SZ''000725.SZ''000728.SZ''000738.SZ''000750.SZ''000768.SZ',
                         '000776.SZ''000783.SZ''000792.SZ''000826.SZ''000839.SZ''000858.SZ''000876.SZ',
                         '000895.SZ''000898.SZ''000938.SZ''000959.SZ''000961.SZ''000963.SZ''000983.SZ',
                         '001979.SZ''002007.SZ''002008.SZ''002024.SZ''002027.SZ''002044.SZ''002065.SZ',
                         '002074.SZ''002081.SZ''002142.SZ''002146.SZ''002153.SZ''002174.SZ''002202.SZ',
                         '002230.SZ''002236.SZ''002241.SZ''002252.SZ''002292.SZ''002294.SZ''002304.SZ',
                         '002310.SZ''002352.SZ''002385.SZ''002411.SZ''002415.SZ''002424.SZ''002426.SZ',
                         '002450.SZ''002456.SZ''002460.SZ''002465.SZ''002466.SZ''002468.SZ''002470.SZ',
                         '002475.SZ''002500.SZ''002508.SZ''002555.SZ''002558.SZ''002572.SZ''002594.SZ',
                         '002601.SZ''002602.SZ''002608.SZ''002624.SZ''002673.SZ''002714.SZ''002736.SZ',
                         '002739.SZ''002797.SZ''002831.SZ''002839.SZ''002841.SZ''300003.SZ''300015.SZ',
                         '300017.SZ''300024.SZ''300027.SZ''300033.SZ''300059.SZ''300070.SZ''300072.SZ',
                         '300122.SZ''300124.SZ''300136.SZ''300144.SZ''300251.SZ''300315.SZ''600000.SH',
                         '600008.SH''600009.SH''600010.SH''600011.SH''600015.SH''600016.SH''600018.SH',
                         '600019.SH''600021.SH''600023.SH''600028.SH''600029.SH''600030.SH''600031.SH',
                         '600036.SH''600038.SH''600048.SH''600050.SH''600061.SH''600066.SH''600068.SH',
                         '600074.SH''600085.SH''600089.SH''600100.SH''600104.SH''600109.SH''600111.SH',
                         '600115.SH''600118.SH''600153.SH''600157.SH''600170.SH''600177.SH''600188.SH',
                         '600196.SH''600208.SH''600219.SH''600221.SH''600233.SH''600271.SH''600276.SH',
                         '600297.SH''600309.SH''600332.SH''600340.SH''600352.SH''600362.SH''600369.SH',
                         '600372.SH''600373.SH''600376.SH''600383.SH''600390.SH''600406.SH''600415.SH',
                         '600436.SH''600482.SH''600485.SH''600489.SH''600498.SH''600518.SH''600519.SH',
                         '600522.SH''600535.SH''600547.SH''600549.SH''600570.SH''600583.SH''600585.SH',
                         '600588.SH''600606.SH''600637.SH''600649.SH''600660.SH''600663.SH''600674.SH',
                         '600682.SH''600685.SH''600688.SH''600690.SH''600703.SH''600704.SH''600705.SH',
                         '600739.SH''600741.SH''600795.SH''600804.SH''600816.SH''600820.SH''600827.SH',
                         '600837.SH''600871.SH''600886.SH''600887.SH''600893.SH''600895.SH''600900.SH',
                         '600909.SH''600919.SH''600926.SH''600958.SH''600959.SH''600977.SH''600999.SH',
                         '601006.SH''601009.SH''601012.SH''601018.SH''601021.SH''601088.SH''601099.SH',
                         '601111.SH''601117.SH''601118.SH''601155.SH''601163.SH''601166.SH''601169.SH',
                         '601186.SH''601198.SH''601211.SH''601212.SH''601216.SH''601225.SH''601228.SH',
                         '601229.SH''601288.SH''601318.SH''601328.SH''601333.SH''601336.SH''601375.SH',
                         '601377.SH''601390.SH''601398.SH''601555.SH''601600.SH''601601.SH''601607.SH',
                         '601608.SH''601611.SH''601618.SH''601628.SH''601633.SH''601668.SH''601669.SH',
                         '601688.SH''601718.SH''601727.SH''601766.SH''601788.SH''601800.SH''601818.SH',
                         '601857.SH''601866.SH''601872.SH''601877.SH''601878.SH''601881.SH''601888.SH',
                         '601898.SH''601899.SH''601901.SH''601919.SH''601933.SH''601939.SH''601958.SH',
                         '601966.SH''601985.SH''601988.SH''601989.SH''601991.SH''601992.SH''601997.SH',
                         '601998.SH''603160.SH''603799.SH''603833.SH''603858.SH''603993.SH']

        # 设置在运行前是否缓存日线,分钟线等各个周期数据
        self.daily_data_cache = True
        print(self.universe)

        # 回测滑点设置,按固定值0.01,20-0.01 = 19.99;百分比0.01,20*(1-0.01) = 19.98;平仓时用"+"
        self.set_slippage(stock_type=StockType.STOCK.value, slippage_type=SlippageType.SLIPPAGE_FIX.value, value=0.01)

        # 回测股票手续费和印花税,卖出印花税,千分之一;开仓手续费,万分之三;平仓手续费,万分之三,最低手续费,5元
        # 沪市,卖出有万分之二的过户费,加入到卖出手续费
        self.set_commission(stock_type=StockType.STOCK_SH.value, tax=0.001, open_commission=0.0003,
                            close_commission=0.0003,
                            close_today_commission=0, min_commission=5)
        # 深市不加过户费
        self.set_commission(stock_type=StockType.STOCK_SZ.value, tax=0.001, open_commission=0.0003,
                            close_commission=0.0005,
                            close_today_commission=0, min_commission=5)

    def handle_bar(self, event):
        # 取当前bar的持仓情况
        available_position_dict = {}
        for position in Environment.bar_position_data_list:
            available_position_dict[position.instrument + "." + position.exchange] = position.position - position.frozen
        # 当前bar的具体时间戳
        current_date = data_transfer.millisecond_to_date(millisecond=self.timetag, format="%Y-%m-%d")
        # 时间戳转换成int,方便后面取数据
        current_date_int = data_transfer.date_str_to_int(current_date)
        print(current_date)
        # 取数据实例
        data_class = GetData()
        # 循环遍历股票池
        for stock in self.universe:
            # 取当前股票的收盘价
            close_price = data_class.get_market_data(Environment.daily_data, stock_code=[stock], field=["close"],
                                                     end=current_date)
            # print(self.start, current_date)
            close_array = np.array(close_price)
            if len(close_array) > 0:
                # 利用talib计算MA
                ma5 = talib.MA(np.array(close_price), timeperiod=5)
                ma20 = talib.MA(np.array(close_price), timeperiod=20)
                # print(type(close_price.keys()))
                # 过滤因为停牌没有数据
                if current_date_int in close_price.keys():
                    # 如果5日均线突破20日均线,并且没有持仓,则买入这只股票100股,以收盘价为指定价交易
                    if ma5[-1] > ma20[-1and stock not in available_position_dict.keys():
                        Trade(self).order_shares(stock_code=stock, shares=100, price_type="fix",
                                                 order_price=close_price[current_date_int],
                                                 account=self.account[0])
                        print("buy", stock, 1"fix", close_price[current_date_int], self.account)
                    # 如果20日均线突破5日均线,并且有持仓,则卖出这只股票100股,以收盘价为指定价交易
                    elif ma5[-1] < ma20[-1and stock in available_position_dict.keys():
                        Trade(self).order_shares(stock_code=stock, shares=-100, price_type="fix",
                                                 order_price=close_price[current_date_int],
                                                 account=self.account[0])
                        print("sell", stock, -1"fix", close_price[current_date_int], self.account)


if __name__ == "__main__":
    # 测试运行完整个策略所需时间,目前没有做过多优化,
    # 300只股票,日线数据,一年的时间区间,4000多次交易记录,在我的虚拟机大概80s,换个性能稍好点的机器,应该会快很多
    from AmazingQuant.utils.performance_test import Timer

    time_test = Timer(True)
    with time_test:
        # 运行策略,设置是否保存委托,成交,资金,持仓
        MaStrategy().run(save_trade_record=True)

4.回测结果分析

  • 自动生成回测结果

    产生的委托,成交,资金,持仓的cvs文件写入到策略所在文件夹

  • 自动生成回测报告

    回测报告是html格式,可在浏览器中打开查看,效果如下图: 


  • Python量化交易开源框架:AmazingQuant_第3张图片

5.实盘交易

目前已实现根据vnpy的方式封装的使用boost对CTP的C++接口进行python3.5的封装,后续将实现与broker_engine的对接

6.已实现和即将实现的功能

  • 已实现

  • 数据库搭建

  • 读取数据

  • 策略运行回测

  • 回测交易记录的保存和分析

  • 实盘CTP接口的封装

  • 即将实现

  • 各种数据的对接

    例如股票的分钟数据、股票财务数据、股票板块成分股、期货分钟数据、日线数据等

  • CTP等交易接口与broker_engine对接

    CTP、xSpeed等

  • 对回测区间的每一根bar的交易和持仓情况可视化

  • 回测分析模块的丰富

    增加brison、FAMA等各种绩效归因模型的分析和可视化


640?wx_fmt=gif


Python中文社区作为一个去中心化的全球技术社区,以成为全球20万Python中文开发者的精神部落为愿景,目前覆盖各大主流媒体和协作平台,与阿里、腾讯、百度、微软、亚马逊、开源中国、CSDN等业界知名公司和技术社区建立了广泛的联系,拥有来自十多个国家和地区数万名登记会员,会员来自以公安部、工信部、清华大学、北京大学、北京邮电大学、中国人民银行、中科院、中金、华为、BAT、谷歌、微软等为代表的政府机关、科研单位、金融机构以及海内外知名公司,全平台近20万开发者关注。

Python量化交易开源框架:AmazingQuant_第4张图片


往期开源项目介绍

Python开源项目介绍:用zmail简单地发邮件

Python开源项目介绍:网站日志分析工具

Python中文社区开源项目计划:ImagePy

Amas:基于大数据平台技术开发的统一监控平台


点击下方阅读原文参与开源项目计划报名或推荐

你可能感兴趣的:(Python量化交易开源框架:AmazingQuant)