Butler-Volmer 方程与Nernst 方程的关系

Bulter-Volmer 方程:

i=icia=FAk0[cO(0,t)expβF(EE0)RTcR(0,t)exp(1β)F(EE0)RT](1) (1) i = i c − i a = F A k 0 [ c O ( 0 , t ) exp ⁡ − β F ( E − E 0 ′ ) R T − c R ( 0 , t ) exp ⁡ ( 1 − β ) F ( E − E 0 ′ ) R T ]

Nernst 方程

Bulter-Volmer方程是动力学方程,那么从它是否能推出热力学的关系?在平衡状态下净电流 i=0 i = 0 ,且反应物的本体浓度bulk concentration等于表面浓度surface concentration,即:

cO=cO;cR=cR c O = c O ∗ ; c R = c R ∗

FAk0[cOexpβF(EE0)RTcRexp(1β)F(EE0)RT]=0(2) (2) F A k 0 [ c O ∗ exp ⁡ − β F ( E − E 0 ′ ) R T − c R ∗ exp ⁡ ( 1 − β ) F ( E − E 0 ′ ) R T ] = 0

整理得:
cOexpβF(EE0)RTcRexp(1β)F(EE0)RT=0(3) (3) c O ∗ exp ⁡ − β F ( E − E 0 ′ ) R T − c R ∗ exp ⁡ ( 1 − β ) F ( E − E 0 ′ ) R T = 0

再整理得:
exp(1β)F(EE0)RTexpβF(EE0)RT=expF(EE0)RT=cOcR(4) (4) exp ⁡ ( 1 − β ) F ( E − E 0 ′ ) R T exp ⁡ − β F ( E − E 0 ′ ) R T = exp ⁡ F ( E − E 0 ′ ) R T = c O ∗ c R ∗

此时为平衡状态则 E=Eeq E = E e q ,根据上式可以得到Nernst方程:
Eeq=E0+RTFlncOcR(5) (5) E e q = E 0 ′ + R T F ln ⁡ c O ∗ c R ∗

__

参考文献

[1] Allen J. Bard, Larry R. Faulkner; Electrochemical methods-Fundamentals and applications.

你可能感兴趣的:(Butler-Volmer 方程与Nernst 方程的关系)