#!/usr/bin/env python3
# -*- coding:UTF-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.python import debug as tf_debug
#tf.keras.backend.set_session(tf_debug.LocalCLIDebugWrapperSession(tf.Session()))
import scipy.misc
x_train = np.array([[1,1],[0,0],[0,1],[1,0]]);
y_train = np.array([0,0,1,1])
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(2, input_shape=(2,),activation='sigmoid',use_bias =True),
tf.keras.layers.Dense(3, activation='relu'),
tf.keras.layers.Dense(3, activation='elu'),
tf.keras.layers.Dense(3, activation='softplus'),
tf.keras.layers.Dense(3, activation='linear'),
tf.keras.layers.Dense(3, activation='exponential'),
tf.keras.layers.Dense(3, activation='selu'),
tf.keras.layers.Dense(1, activation='tanh',use_bias =True)
])
model.compile(optimizer='adam',
loss='mean_squared_error',
metrics=['binary_accuracy'])
model.fit(x_train, y_train, epochs=5000)
model.save('/home/a/my_minis.h5')
new_model = tf.keras.models.load_model('/home/a/my_minis.h5')
print(new_model.predict(x_train))
print(new_model.predict_classes(x_train))
loss: 3.1563e-05 - binary_accuracy: 1.0000
Epoch 5000/5000
4/4 [==============================] - 0s 808us/sample - loss: 3.1545e-05 - binary_accuracy: 1.0000
[[2.9830632e-04]
[1.9936262e-04]
[9.9207312e-01]
[9.9205357e-01]]
[[0]
[0]
[1]
[1]]
--------------------------------------------------------------
https://www.tensorflow.org/api_docs/python/tf/keras/activations
tf.keras.activations.elu
tf.keras.activations.elu(
x,
alpha=1.0
)
import tensorflow as tf
import os
from math import *
print('tf versions',tf.__version__)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
e1=tf.keras.activations.elu(-1.3)
e2=tf.keras.activations.elu(1.3)
with tf.Session():
re1 = e1.eval()
re2 = e2.eval()
print(re1,re2, exp(-1.3)-1 )
import tensorflow as tf
import os
from math import *
print('tf versions',tf.__version__)#tf versions 1.13.1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
e1=tf.keras.activations.exponential(1.3)
e2=tf.keras.activations.exponential(0.1)
with tf.Session():
re1 = e1.eval()
re2 = e2.eval()
print(re1,re2, exp(1.3),exp(0.1) )#3.6692965 1.105171 3.6692966676192444 1.1051709180756477
import tensorflow as tf
import os
from math import *
print('tf versions',tf.__version__)#tf versions 1.13.1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
e1=tf.keras.activations.linear(1.3)
e2=tf.keras.activations.linear(0.1)
print(e1,e2)#1.3 0.1
relu
代码托管在github
https://github.com/sofiathefirst/AIcode