本文通过Java书写MapReduce的方式来对Hbase进行操作
- 使用 MapReduce将 HDFS 的文件导入到 hbase
- 从 HBase 实现备份数据到 HDFS
- 将 HBase 中的数据导入到 MySQL
首先,使用开发工具创建一个maven项目
具体pom文件如下.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>com.cflgroupId>
<artifactId>mapreduce_hbase_demoartifactId>
<version>1.0-SNAPSHOTversion>
<packaging>jarpackaging>
<dependencies>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-clientartifactId>
<version>2.7.3version>
dependency>
<dependency>
<groupId>org.apache.hbasegroupId>
<artifactId>hbase-clientartifactId>
<version>1.2.6version>
dependency>
<dependency>
<groupId>org.apache.hbasegroupId>
<artifactId>hbase-serverartifactId>
<version>1.2.6version>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-compiler-pluginartifactId>
<version>3.5.1version>
<configuration>
<source>1.8source>
<target>1.8target>
configuration>
plugin>
plugins>
build>
project>
注意版本兼容问题!!!
创建log4j.properties
#OFF,systemOut,logFile,logDailyFile,logRollingFile,logMail,logDB,ALL
log4j.rootLogger=ALL,systemOut
log4j.appender.systemOut= org.apache.log4j.ConsoleAppender
log4j.appender.systemOut.layout= org.apache.log4j.PatternLayout
log4j.appender.systemOut.layout.ConversionPattern= [%-5p][%-22d{yyyy/MM/dd HH:mm:ssS}][%l]%n%m%n
log4j.appender.systemOut.Threshold= INFO
log4j.appender.systemOut.ImmediateFlush= TRUE
log4j.appender.systemOut.Target= System.out
接下来,将hadoop的如下配置文件放入项目中
- core-site.xml
- hdfs-site.xml
- mapred-site.xml
- yarn-site.xml
- slaves
以及hbase的配置文件
- hbase-site.xml
- regionservers
package com.cfl.mapreduce.hbase;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
/**
* MapReduce操作HBase:将HBase中的数据写入到HDFS
*/
public class ImpHDFSFromHBase extends Configured implements Tool {
public static class MyTableMapper extends TableMapper<NullWritable, Text>{
private Text text = new Text();
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
String name = null;
String num = null;
String fee = null;
for (Cell cell: value.listCells()) {
if (Bytes.toString(CellUtil.cloneQualifier(cell)).equals("name")){
name = Bytes.toString(CellUtil.cloneValue(cell));
}
if (Bytes.toString(CellUtil.cloneQualifier(cell)).equals("num")){
num = Bytes.toString(CellUtil.cloneValue(cell));
}
if (Bytes.toString(CellUtil.cloneQualifier(cell)).equals("fee")){
fee = Bytes.toString(CellUtil.cloneValue(cell));
}
}
text.set(name + " " + num + " " + fee);
context.write(NullWritable.get(), text);
}
}
public static class MyReduce extends Reducer<NullWritable, Text, NullWritable, Text>{
@Override
protected void reduce(NullWritable key, Iterable values, Context context) throws IOException, InterruptedException {
for (Text value: values) {
context.write(NullWritable.get(), value);
}
}
}
@Override
public int run(String[] args) throws Exception {
Configuration cfg = new Configuration();
cfg.set("mapred.jar", "E:\\code\\workspace_idea\\hadoopproject\\hadoop_mapreduce_demo\\target\\hadoop_mapreduce_demo-1.0-SNAPSHOT.jar");
Job job = Job.getInstance(cfg, "从HBase备份免费课程到HDFS中");
job.setJarByClass(ImpHDFSFromHBase.class);
// 查询免费的课程
Scan scan = new Scan();
Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("fee"), CompareFilter.CompareOp.EQUAL, Bytes.toBytes("免费"));
scan.setFilter(filter);
TableMapReduceUtil.initTableMapperJob(args[0] ,scan, MyTableMapper.class,NullWritable.class, Text.class, job);
job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 成功返回0,失败返回1
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
System.out.println(ToolRunner.run(new ImpHDFSFromHBase(), args));
}
}
首先,在HDFS上需要有一个数据文件
比如这样,路径为/user/hadoop/input
package com.cfl.mapreduce.hbase;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
/**
* MapReduce操作HBase:读取HDFS文件存储到HBase中
*/
public class ImpHBaseFormHDFS extends Configured implements Tool {
/**
* LongWritable 文件中一行文本的偏移量
* Text 文件中一行文本内容
* ImmutableBytesWritable 对应行健
* Put 对应一条数据
*/
public static class HDFSMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put>{
private ImmutableBytesWritable rowkey = new ImmutableBytesWritable(); // rowkey
private byte[] info = Bytes.toBytes("info");// 列族
private byte[] name = Bytes.toBytes("name");// 列:课程名称 name
private byte[] num = Bytes.toBytes("num");// 列:人数 num
private byte[] fee = Bytes.toBytes("fee");// 列:费用 fee
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] strings = value.toString().split("\\s+");// 按空格分隔(一个或多个空格)
if (strings.length == 3) {
rowkey.set(Bytes.toBytes(strings[0])); // 将课程作为rowkey
Put put = new Put(Bytes.toBytes(strings[0]));
put.addColumn(info, name, Bytes.toBytes(strings[0]));
put.addColumn(info, num, Bytes.toBytes(strings[1]));
put.addColumn(info, fee, Bytes.toBytes(strings[2]));
context.write(rowkey, put);
}
}
}
@Override
public int run(String[] args) throws Exception {
// Configuration 读取 hadoop core-site.xml文件
Configuration cfg = new Configuration();
// 设置生成的jar名字
cfg.set("mapred.jar", "E:\\code\\workspace_idea\\hadoopproject\\hadoop_mapreduce_demo\\target\\hadoop_mapreduce_demo-1.0-SNAPSHOT.jar");
Job job = Job.getInstance(cfg, "导入课程到HBase中");
job.setJarByClass(ImpHBaseFormHDFS.class);
job.setMapperClass(HDFSMapper.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(Put.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
// TableMapReduceUtil 读取了hadoop的配置文件和hbase的配置文件,并做了合并
TableMapReduceUtil.initTableReducerJob(
args[1], // output table
null, // reducer class
job);
job.setNumReduceTasks(1); // at least one, adjust as required
// 成功返回0,失败返回1
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int n = ToolRunner.run(new ImpHBaseFormHDFS(), args);
System.out.println(n);
}
}
package com.cfl.mapreduce.hbase;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.CellUtil;
import java.sql.Connection;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.RegexStringComparator;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
/**
* MapReduce操作HBase:将HBase中的数据导入到MySql
* Map的作用是分布式的查询到符合的记录
* Reduce得到map的输出汇总,连接mysql,存储数据(这样只需要连接一次mysql,提高效率)
* 如果在map中连接mysql,存储数据,每一次map都会连接,效率低
*/
public class HBaseToMySql extends Configured implements Tool {
public static void addTmpJar(String jarPath, Configuration conf) throws IOException {
System.setProperty("path.separator", ":");
FileSystem fs = FileSystem.getLocal(conf);
String newJarPath = new Path(jarPath).makeQualified(fs).toString();
String tmpjars = conf.get("tmpjars");
if (tmpjars == null || tmpjars.length() == 0) {
conf.set("tmpjars", newJarPath);
} else {
conf.set("tmpjars", tmpjars + "," + newJarPath);
}
}
public static class ReadMap extends TableMapper{
private Text sql = new Text();
// 获取列的值
private String getValue(String qualifier, Result result){
return Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes(qualifier)));
}
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
String name = getValue("name", value);
String numStr = getValue("num", value);
String pay = getValue("fee", value);
int num = Integer.parseInt(numStr);
String str = "insert into tb_course(name,num,pay) values('"+name+"',"+num+",'"+pay+"')";
sql.set(str);
context.write(NullWritable.get(), sql);
}
}
public static class WriteReduce extends Reducer{
private Connection conn = null;
private Statement st = null;
// 连接mysql
@Override
protected void setup(Context context) throws IOException, InterruptedException {
try {
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection("jdbc:mysql://192.168.19.95:3306/kgc","root","root");
st = conn.createStatement();
} catch (SQLException e) {
throw new InterruptedException(e.getMessage());
} catch (ClassNotFoundException e) {
throw new InterruptedException(e.getMessage());
}
}
// 不做任何输出,插入数据
@Override
protected void reduce(NullWritable key, Iterable values, Context context) throws IOException, InterruptedException {
for (Text v: values) {
try {
st.executeUpdate(v.toString());
} catch (SQLException e) {
throw new InterruptedException(e.getMessage());
}
}
}
// 关闭连接
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
try {
if (st != null) {
st.close();
}
if (conn != null) {
conn.close();
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}
@Override
public int run(String[] args) throws Exception {
Configuration cfg = getConf();
addTmpJar(args[0], cfg);
cfg.set("mapreduce.job.jar", "E:\\code\\workspace_idea\\hadoopproject\\hadoop_mapreduce_demo\\target\\hadoop_mapreduce_demo-1.0-SNAPSHOT.jar");
Job job = Job.getInstance(cfg, "从 HBase 将收费课程导入到MySQL DB");
job.setJarByClass(HBaseToMySql.class);
// 查询含有“K币”的课程
Scan scan = new Scan();
//Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("fee"), CompareFilter.CompareOp.EQUAL, new RegexStringComparator("K币"));
Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("fee"), CompareFilter.CompareOp.EQUAL, Bytes.toBytes("免费"));
scan.setFilter(filter);
TableMapReduceUtil.initTableMapperJob(args[1] ,scan, ReadMap.class, NullWritable.class, Text.class, job);
job.setReducerClass(WriteReduce.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(NullWritable.class);
FileOutputFormat.setOutputPath(job, new Path(args[2]));
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
System.out.println(ToolRunner.run(new HBaseToMySql(), args));
}
}
我们要把hbase中的数据导入到mysql,这个过程需要使用第三方的jar,上面笔者是单独用了一个方法 addTmpJar() 来添加第三方jar,因为如果直接使用windows的路径提交会报错,Linux下解析不了windows下的路径,如果你想添加多个第三方jar可以多调用几次addTmpJar()方法。除了这种方式,还可以使用如下方式来提交第三方jar,比如mysql的驱动jar
注意:使用-libjars提交第三方jar时,它不作为参数,只是hadoop会读取它
public int run(String[] args) throws Exception {
Configuration cfg = getConf();
cfg.set("mapreduce.job.jar", "E:\\code\\workspace_idea\\hadoopproject\\hadoop_mapreduce_demo\\target\\hadoop_mapreduce_demo-1.0-SNAPSHOT.jar");
Job job = Job.getInstance(cfg, "从 HBase 将收费课程导入到MySQL DB");
job.setJarByClass(HBaseToMySql.class);
// 查询含有“K币”的课程
Scan scan = new Scan();
//Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("fee"), CompareFilter.CompareOp.EQUAL, new RegexStringComparator("K币"));
Filter filter = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("fee"), CompareFilter.CompareOp.EQUAL, Bytes.toBytes("免费"));
scan.setFilter(filter);
TableMapReduceUtil.initTableMapperJob(args[0] ,scan, ReadMap.class, NullWritable.class, Text.class, job);
job.setReducerClass(WriteReduce.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(NullWritable.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;