1、底层为数组+链表(当容量达到8时变为红黑树)
2、非线程安全;
3、key和value均可为null;
4、初始容量为16;
5、最大容量为MAXIMUM_CAPACITY = 1 << 30=2^30
6、负载因子为0.75,意思是比如我初始容量为16,那么当键值对超过16*0.75=12时就会进行扩容,新容量=旧容量*2;
7、扩容条件:1️⃣元素数量达到阈值;2️⃣HashMap准备树形化时发现数组长度太短(长度小于MIN_TREEIFY_CAPACITY=64)
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*/
final void treeifyBin(Node[] tab, int hash) {
int n, index; Node e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
// 此时进行扩容
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode hd = null, tl = null;
do {
TreeNode p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
8、初始容量尽量设置为2的幂次,便于底层进行位移运算,具体解释点这里;
9、HashMap容量=initailCapacity*loadFactor;
10、put方法:先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。
11、get方法:首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到正确的节点,即能找到需要的元素。
12、获取value:Object value=map.get(key)
;
13、获取key:
// key的集合
Set set=map.keySet() ;
// key value的集合
Set<Map.Entry<String, Object>> entries = map.entrySet();
遍历方式
Iterator
Iterator iterator = map.keySet().iterator();
while (iterator.hasNext()){
String key = iterator.next();
System.out.println("key=" + key + " value=" + map.get(key));
}
map.forEach((key,value)->{
System.out.println("key=" + key + " value=" + value);
});
建议使用第一种EntrySet遍历方式
第一种可以把key和value同时取出来;
第二种要先取出key,再去取value,效率较低;
第三种是JDK1.8及以上,通过外层遍历table,内层遍历链表或红黑树
1、ConcurrentHashMap采用了分段锁技术,其中Segment继承于 ReentrantLock;
源码如下:
/**
* Stripped-down version of helper class used in previous version,
* declared for the sake of serialization compatibility
*/
static class Segment<K,V> extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L;
final float loadFactor;
Segment(float lf) { this.loadFactor = lf; }
}
2、get方法,ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁。
只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。由于 Node中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
3、put方法:
虽然 Node中的 value 是用 volatile 关键词修饰的,但是并不能保证并发的原子性,所以 put 操作时仍然需要加锁处理。
首先也是通过 Key 的 Hash 定位到具体的 Segment,在 put 之前会进行一次扩容校验。这里比 HashMap 要好的一点是:HashMap 是插入元素之后再看是否需要扩容,有可能扩容之后后续就没有插入就浪费了本次扩容(扩容非常消耗性能)。
而 ConcurrentHashMap 不一样,它是先将数据插入之后再检查是否需要扩容,之后再做插入。
/**
* Key-value entry. This class is never exported out as a
* user-mutable Map.Entry (i.e., one supporting setValue; see
* MapEntry below), but can be used for read-only traversals used
* in bulk tasks. Subclasses of Node with a negative hash field
* are special, and contain null keys and values (but are never
* exported). Otherwise, keys and vals are never null.
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node next;
Node(int hash, K key, V val, Node next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) { //此处加锁
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}