Github:
https://github.com/icsfy/Pedestrian_Detection/blob/master/MORE.md
转载:http://blog.csdn.net/masibuaa/article/details/16105073
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。
负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本)。http://blog.csdn.net/gojawee/article/details/72828371
训练好的SVM分类器保存为XML文件,然后根据其中的支持向量和参数生成OpenCV中的HOG描述子可用的检测子参数,再调用OpenCV中的多尺度检测函数进行行人检测。
难例(Hard Example)是指利用第一次训练的分类器在负样本原图(肯定没有人体)上进行行人检测时所有检测到的矩形框,这些矩形框区域很明显都是误报,把这些误报的矩形框保存为图片,加入到初始的负样本集合中,重新进行SVM的训练,可显著减少误报。
http://blog.csdn.net/GoJawee/article/details/72845508
训练和检测的代码:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
#define PosSamNO 2400 //正样本个数
#define NegSamNO 12000 //负样本个数
#define TRAIN true //是否进行训练,true表示重新训练,false表示读取xml文件中的SVM模型
#define CENTRAL_CROP true //true:训练时,对96*160的INRIA正样本图片剪裁出中间的64*128大小人体
//HardExample:负样本个数。如果HardExampleNO大于0,表示处理完初始负样本集后,继续处理HardExample负样本集。
//不使用HardExample时必须设置为0,因为特征向量矩阵和特征类别矩阵的维数初始化时用到这个值
#define HardExampleNO 0
//继承自CvSVM的类,因为生成setSVMDetector()中用到的检测子参数时,需要用到训练好的SVM的decision_func参数,
//但通过查看CvSVM源码可知decision_func参数是protected类型变量,无法直接访问到,只能继承之后通过函数访问
class MySVM : public CvSVM
{
public:
//获得SVM的决策函数中的alpha数组
double * get_alpha_vector()
{
return this->decision_func->alpha;
}
//获得SVM的决策函数中的rho参数,即偏移量
float get_rho()
{
return this->decision_func->rho;
}
};
int main()
{
//检测窗口(64,128),块尺寸(16,16),块步长(8,8),cell尺寸(8,8),直方图bin个数9
HOGDescriptor hog(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9);//HOG检测器,用来计算HOG描述子的
int DescriptorDim;//HOG描述子的维数,由图片大小、检测窗口大小、块大小、细胞单元中直方图bin个数决定
MySVM svm;//SVM分类器
//若TRAIN为true,重新训练分类器
if(TRAIN)
{
string ImgName;//图片名(绝对路径)
ifstream finPos("F:\\dataset\\pos\\pos.txt");//正样本图片的文件名列表
ifstream finNeg("F:\\dataset\\neg\\neg.txt");//负样本图片的文件名列表
Mat sampleFeatureMat;//所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数
Mat sampleLabelMat;//训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人
//依次读取正样本图片,生成HOG描述子
for(int num=0; numcout<<"处理:"<//ImgName是全路径名
Mat src = imread(ImgName);//读取图片
if(CENTRAL_CROP)
src = src(Rect(16,16,64,128));//将96*160的INRIA正样本图片剪裁为64*128,即剪去上下左右各16个像素
//resize(src,src,Size(64,128));
vector<float> descriptors;//HOG描述子向量
hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
//cout<<"描述子维数:"<
//处理第一个样本时初始化特征向量矩阵和类别矩阵,因为只有知道了特征向量的维数才能初始化特征向量矩阵
if( 0 == num )
{
DescriptorDim = descriptors.size();//HOG描述子的维数
//初始化所有训练样本的特征向量组成的矩阵,行数等于所有样本的个数,列数等于HOG描述子维数sampleFeatureMat
sampleFeatureMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, DescriptorDim, CV_32FC1);
//初始化训练样本的类别向量,行数等于所有样本的个数,列数等于1;1表示有人,-1表示无人
sampleLabelMat = Mat::zeros(PosSamNO+NegSamNO+HardExampleNO, 1, CV_32FC1);
}
//将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
for(int i=0; ifloat >(num,i) = descriptors[i];//第num个样本的特征向量中的第i个元素
sampleLabelMat.at<float>(num,0) = 1;//正样本类别为1,有人
}
//依次读取负样本图片,生成HOG描述子
for(int num=0; numcout<<"处理:"<//读取图片
//resize(src,img,Size(64,128));
vector<float> descriptors;//HOG描述子向量
hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
//cout<<"描述子维数:"<
//将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
for(int i=0; ifloat >(num+PosSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
sampleLabelMat.at<float>(num+PosSamNO,0) = -1;//负样本类别为-1,无人
}
//处理HardExample负样本
if(HardExampleNO > 0)
{
ifstream finHardExample("F:\\dataset\\HardExample\\HardExample.txt");//HardExample负样本的文件名列表
//依次读取HardExample负样本图片,生成HOG描述子
for(int num=0; numcout<<"处理:"<//读取图片
//resize(src,img,Size(64,128));
vector<float> descriptors;//HOG描述子向量
hog.compute(src,descriptors,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
//cout<<"描述子维数:"<
//将计算好的HOG描述子复制到样本特征矩阵sampleFeatureMat
for(int i=0; ifloat >(num+PosSamNO+NegSamNO,i) = descriptors[i];//第PosSamNO+num个样本的特征向量中的第i个元素
sampleLabelMat.at<float>(num+PosSamNO+NegSamNO,0) = -1;//负样本类别为-1,无人
}
}
////输出样本的HOG特征向量矩阵到文件
//ofstream fout("SampleFeatureMat.txt");
//for(int i=0; i
//{
// fout<
// for(int j=0; j
// fout<(i,j)<<" ";
// fout<
//}
//训练SVM分类器
//迭代终止条件,当迭代满1000次或误差小于FLT_EPSILON时停止迭代
CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
//SVM参数:SVM类型为C_SVC;线性核函数;松弛因子C=0.01
CvSVMParams param(CvSVM::C_SVC, CvSVM::LINEAR, 0, 1, 0, 0.01, 0, 0, 0, criteria);
cout<<"开始训练SVM分类器"<//训练分类器
cout<<"训练完成"<"F:\\dataset\\SVM_HOG.xml" );//将训练好的SVM模型保存为xml文件
}
else //若TRAIN为false,从XML文件读取训练好的分类器
{
svm.load("F:\\dataset\\SVM_HOG.xml");//从XML文件读取训练好的SVM模型
}
/*************************************************************************************************
线性SVM训练完成后得到的XML文件里面,有一个数组,叫做support vector,还有一个数组,叫做alpha,有一个浮点数,叫做rho;
将alpha矩阵同support vector相乘,注意,alpha*supportVector,将得到一个列向量。之后,再该列向量的最后添加一个元素rho。
如此,变得到了一个分类器,利用该分类器,直接替换opencv中行人检测默认的那个分类器(cv::HOGDescriptor::setSVMDetector()),
就可以利用你的训练样本训练出来的分类器进行行人检测了。
***************************************************************************************************/
DescriptorDim = svm.get_var_count();//特征向量的维数,即HOG描述子的维数
int supportVectorNum = svm.get_support_vector_count();//支持向量的个数
cout<<"支持向量个数:"<1 , supportVectorNum, CV_32FC1);//alpha向量,长度等于支持向量个数
Mat supportVectorMat = Mat::zeros(supportVectorNum, DescriptorDim, CV_32FC1);//支持向量矩阵
Mat resultMat = Mat::zeros(1, DescriptorDim, CV_32FC1);//alpha向量乘以支持向量矩阵的结果
//将支持向量的数据复制到supportVectorMat矩阵中
for(int i=0; iconst float * pSVData = svm.get_support_vector(i);//返回第i个支持向量的数据指针
for(int j=0; jfloat>(i,j) = pSVData[j];
}
}
//将alpha向量的数据复制到alphaMat中
double * pAlphaData = svm.get_alpha_vector();//返回SVM的决策函数中的alpha向量
for(int i=0; ifloat>(0,i) = pAlphaData[i];
}
//计算-(alphaMat * supportVectorMat),结果放到resultMat中
//gemm(alphaMat, supportVectorMat, -1, 0, 1, resultMat);//不知道为什么加负号?
resultMat = -1 * alphaMat * supportVectorMat;
//得到最终的setSVMDetector(const vector& detector)参数中可用的检测子
vector<float> myDetector;
//将resultMat中的数据复制到数组myDetector中
for(int i=0; ifloat>(0,i));
}
//最后添加偏移量rho,得到检测子
myDetector.push_back(svm.get_rho());
cout<<"检测子维数:"<//设置HOGDescriptor的检测子
HOGDescriptor myHOG;
myHOG.setSVMDetector(myDetector);
//myHOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
//保存检测子参数到文件
ofstream fout("F:\\dataset\\HOGDetectorForOpenCV.txt");
for(int i=0; i/**************读入图片进行HOG行人检测******************/
Mat src = imread("Test.jpg");
vector found, found_filtered;//矩形框数组
cout<<"进行多尺度HOG人体检测"<0, Size(8,8), Size(32,32), 1.05, 2);//对图片进行多尺度行人检测
cout<<"找到的矩形框个数:"<//找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的话,则取外面最大的那个矩形框放入found_filtered中
for(int i=0; i < found.size(); i++)
{
Rect r = found[i];
int j=0;
for(; j < found.size(); j++)
if(j != i && (r & found[j]) == r)
break;
if( j == found.size())
found_filtered.push_back(r);
}
//画矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要做一些调整
for(int i=0; i0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(src, r.tl(), r.br(), Scalar(0,255,0), 3);
}
//imwrite("ImgProcessed.jpg",src);
namedWindow("src",0);
imshow("src",src);
waitKey(0);//注意:imshow之后必须加waitKey,否则无法显示图像
///******************读入单个64*128的测试图并对其HOG描述子进行分类*********************/
////读取测试图片(64*128大小),并计算其HOG描述子
//Mat testImg = imread("noperson000026.jpg");
//vector descriptor;
//hog.compute(testImg,descriptor,Size(8,8));//计算HOG描述子,检测窗口移动步长(8,8)
//Mat testFeatureMat = Mat::zeros(1,3780,CV_32FC1);//测试样本的特征向量矩阵
////将计算好的HOG描述子复制到testFeatureMat矩阵中
//for(int i=0; i
// testFeatureMat.at(0,i) = descriptor[i];
////用训练好的SVM分类器对测试图片的特征向量进行分类
//int result = svm.predict(testFeatureMat);//返回类标
//cout<<"分类结果:"<
system("pause");
}
参考:http://blog.csdn.net/carson2005/article/details/7841443