Kafka源码分析及图解原理之Producer端

一.前言

  任何消息队列都是万变不离其宗都是3部分,消息生产者(Producer)、消息消费者(Consumer)和服务载体(在Kafka中用Broker指代)。那么本篇主要讲解Producer端,会有适当的图解帮助理解底层原理。

 Kafka源码分析及图解原理之Producer端_第1张图片

一.开发应用

  首先介绍一下开发应用,如何构建一个KafkaProducer及使用,还有一些重要参数的简介。

1.1 一个栗子

 1 /**
 2  * Kafka Producer Demo实例类。
 3  *
 4  * @author GrimMjx
 5  */
 6 public class ProducerDemo {
 7     public static void main(String[] args) throws ExecutionException, InterruptedException {
 8         Properties prop = new Properties();
 9         prop.put("client.id", "DemoProducer");
10 
11         // 以下三个参数必须指定
12         // 用于创建与Kafka broker服务器的连接,集群的话则用逗号分隔
13         prop.put("bootstrap.servers", "localhost:9092");
14         // 消息的key序列化方式
15         prop.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
16         // 消息的value序列化方式
17         prop.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
18 
19         // 以下参数为可配置选项
20         prop.put("acks", "-1");
21         prop.put("retries", "3");
22         prop.put("batch.size", "323840");
23         prop.put("linger.ms", "10");
24         prop.put("buffer.memory", "33554432");
25         prop.put("max.block.ms", "3000");
26 
27         KafkaProducer producer = new KafkaProducer(prop);
28         try {
29             // 异步发送,继续发送消息不用等待。当有结果返回时,callback会被通知执行
30             producer.send(new ProducerRecord("test", "key1", "value1"),
31                     new Callback() {
32                         // 返回结果RecordMetadata记录元数据包括了which partition的which offset
33                         public void onCompletion(RecordMetadata metadata, Exception e) {
34                             // 发送成功
35                             if (e == null) {
36                                 System.out.println("The offset of the record we just sent is: " + metadata.offset());
37 
38                                 // 发送失败
39                             } else {
40                                 if (e instanceof RetriableException) {
41                                     // 处理可重试的异常,比如分区leader副本不可用
42                                     // 一般用retries参数来设置重置,毕竟这里也没有什么其他能做的,也是同样的重试发送消息
43                                 } else {
44                                     // 处理不可重试异常
45                                 }
46                             }
47                         }
48                     }
49             );
50 
51             // 同步发送,send方法返回Future,然后get。在没有返回结果一直阻塞
52             producer.send(new ProducerRecord("test", "key1", "value1")).get();
53 
54         } finally {
55             // producer运行的时候占用系统额外资源,最后一定要关闭
56             producer.close();
57         }
58     }
59 }

  注释已经写得十分详细了,参数的下面会说,这里就只说一下异步发送和同步发送。我们先看下KafkaProducer.send方法,可以看到返回的是一个Future,那么如何实现同步阻塞和异步非阻塞呢?

  • 同步阻塞:send方法返回Future,然后get。在没有返回结果一直阻塞,无限等待
  • 异步非阻塞:send方法提供callback,调用send方法后可以继续发送消息不用等待。当有结果返回时,callback会被通知执行

Kafka源码分析及图解原理之Producer端_第2张图片

1.2 重要参数

  这里分析一下broker端的重要参数,前3个是必要参数。Kafka的文档真的很吊,可以看这个类,每个参数和注释都解释的十分详细:org.apache.kafka.clients.producer.ProducerConfig

  • bootstrap.server(必要):broker服务器列表,如果集群的机器很多,不用全配,producer可以发现集群中所有broker
  • key.serializer/value.serializer(必要):key和value的序列化方式。这两个参数都必须是全限定类名,可以自定义拓展。
  • acks:有3个值,0、1和all(-1)
    • 0:produce不关心broker端的处理结果,吞吐量最高
    • 1:produce发送消息给leader broker端,broker端写入本地日志返回结果,折中方案
    • all(-1):配合min.insync.replicas使用,控制写入isr中的多少副本才算成功
      • 思考:如果当前集群中ISR副本小于min.insync.replicas会发生什么,消费者还能正常消费吗?stack overflow地址:https://stackoverflow.com/questions/57231185/does-min-insync-replicas-property-effects-consumers-in-kafka
  • buffer.memory:producer启动会创建一个内存缓冲区保存待发送的消息,这部分的内存大小就是这个参数来控制的
  • commpression.type:压缩算法的选择,目前有GZIP、Snappy和LZ4。目前结合LZ4性能最好
  • retries:重试次数,0.11.0.0版本之前可能导致消息重发
  • batch.size:相同分区多条消息集合叫batch,当batch满了则发送给broker
  • linger.ms:难道batch没满就不发了么?当然不是,不满则等linger.ms时间再发。延时权衡行为
  • max.request.size:控制发送请求的大小
  • request.timeout.ms:超过时间则会在回调函数抛出TimeoutException异常
  • partitioner.class:分区机制,可自定义,默认分区器的处理是:有key则用murmur2算法计算key的哈希值,对总分区取模算出分区号,无key则轮询
  • enable.idempotence:Apache Kafka 0.11.0.0版本用于实现EOS的利器

二.源码分析及图解原理

2.1 RecordAccumulator

  上面介绍的参数中buffer.memory是缓冲区的大小,RecordAccmulator就是承担了缓冲区的角色。默认是32MB。

  还有上面介绍的参数中batch.size提到了batch的概念,在kafka producer中,消息不是一条一条发给broker的,而是多条消息组成一个ProducerBatch,然后由Sender一次性发出去,这里的batch.size并不是消息的条数(凑满多少条即发送),而是一个大小。默认是16KB,可以根据具体情况来进行优化。

  在RecordAccumulator中,最核心的参数就是:

private final ConcurrentMap> batches;

  它是一个ConcurrentMap,key是TopicPartition类,代表一个topic的一个partition。value是一个包含ProducerBatch的双端队列。等待Sender线程发送给broker。画张图来看下:

Kafka源码分析及图解原理之Producer端_第3张图片

  再从源码角度来看如何添加到缓冲区队列里的,主要看这个方法:org.apache.kafka.clients.producer.internals.RecordAccumulator#append:

  注释写的十分详细了,这里需要思考一点,为什么分配内存的代码没有放在synchronized同步块里?看起来这里很多余,导致下面的synchronized同步块中还要tryAppend一下,因为这时候可能其他线程已经创建好RecordBatch了。造成多余的内存申请。但是仔细想想,如果把分配内存放在synchronized同步块会有什么问题?

  内存申请不到线程会一直等待,如果放在同步块中会造成一直不释放Deque队列的锁,那其他线程将无法对Deque队列进行线程安全的同步操作。那不是走远了?

 1 /**
 2  * Add a record to the accumulator, return the append result
 3  * 

4 * The append result will contain the future metadata, and flag for whether the appended batch is full or a new batch is created 5 *

6 * 7 * @param tp The topic/partition to which this record is being sent 8 * @param timestamp The timestamp of the record 9 * @param key The key for the record 10 * @param value The value for the record 11 * @param headers the Headers for the record 12 * @param callback The user-supplied callback to execute when the request is complete 13 * @param maxTimeToBlock The maximum time in milliseconds to block for buffer memory to be available 14 */ 15 public RecordAppendResult append(TopicPartition tp, 16 long timestamp, 17 byte[] key, 18 byte[] value, 19 Header[] headers, 20 Callback callback, 21 long maxTimeToBlock) throws InterruptedException { 22 // We keep track of the number of appending thread to make sure we do not miss batches in 23 // abortIncompleteBatches(). 24 appendsInProgress.incrementAndGet(); 25 ByteBuffer buffer = null; 26 if (headers == null) headers = Record.EMPTY_HEADERS; 27 try { 28 // check if we have an in-progress batch 29 // 其实就是一个putIfAbsent操作的方法,不展开分析 30 Deque dq = getOrCreateDeque(tp); 31 // batches是线程安全的,但是Deque不是线程安全的 32 // 已有在处理中的batch 33 synchronized (dq) { 34 if (closed) 35 throw new IllegalStateException("Cannot send after the producer is closed."); 36 RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq); 37 if (appendResult != null) 38 return appendResult; 39 } 40 41 // we don't have an in-progress record batch try to allocate a new batch 42 // 创建一个新的ProducerBatch 43 byte maxUsableMagic = apiVersions.maxUsableProduceMagic(); 44 // 分配一个内存 45 int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers)); 46 log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition()); 47 // 申请不到内存 48 buffer = free.allocate(size, maxTimeToBlock); 49 synchronized (dq) { 50 // Need to check if producer is closed again after grabbing the dequeue lock. 51 if (closed) 52 throw new IllegalStateException("Cannot send after the producer is closed."); 53 54 // 再次尝试添加,因为分配内存的那段代码并不在synchronized块中 55 // 有可能这时候其他线程已经创建好RecordBatch了,finally会把分配好的内存还回去 56 RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq); 57 if (appendResult != null) { 58 // 作者自己都说了,希望不要总是发生,多个线程都去申请内存,到时候还不是要还回去? 59 // Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often... 60 return appendResult; 61 } 62 63 // 创建ProducerBatch 64 MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic); 65 ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds()); 66 FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds())); 67 68 dq.addLast(batch); 69 // incomplete是一个Set集合,存放不完整的batch 70 incomplete.add(batch); 71 72 // Don't deallocate this buffer in the finally block as it's being used in the record batch 73 buffer = null; 74 75 // 返回记录添加结果类 76 return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true); 77 } 78 } finally { 79 // 释放要还的内存 80 if (buffer != null) 81 free.deallocate(buffer); 82 appendsInProgress.decrementAndGet(); 83 } 84 }

  附加tryAppend()方法,不多说,都在代码注释里:

 1 /**
 2  *  Try to append to a ProducerBatch.
 3  *
 4  *  If it is full, we return null and a new batch is created. We also close the batch for record appends to free up
 5  *  resources like compression buffers. The batch will be fully closed (ie. the record batch headers will be written
 6  *  and memory records built) in one of the following cases (whichever comes first): right before send,
 7  *  if it is expired, or when the producer is closed.
 8  */
 9 private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers, Callback callback, Deque deque) {
10     // 获取最新加入的ProducerBatch
11     ProducerBatch last = deque.peekLast();
12     if (last != null) {
13         FutureRecordMetadata future = last.tryAppend(timestamp, key, value, headers, callback, time.milliseconds());
14         if (future == null)
15             last.closeForRecordAppends();
16         else
17             // 记录添加结果类包含future、batch是否已满的标记、是否是新batch创建的标记
18             return new RecordAppendResult(future, deque.size() > 1 || last.isFull(), false);
19     }
20     // 如果这个Deque没有ProducerBatch元素,或者已经满了不足以加入本条消息则返回null
21     return null;
22 }

   以上代码见图解:

Kafka源码分析及图解原理之Producer端_第4张图片 

2.2 Sender

  Sender里最重要的方法莫过于run()方法,其中比较核心的方法是org.apache.kafka.clients.producer.internals.Sender#sendProducerData

  其中pollTimeout需要认真读注释,意思是最长阻塞到至少有一个通道在你注册的事件就绪了。返回0则表示走起发车了

 1 private long sendProducerData(long now) {
 2     // 获取当前集群的所有信息
 3     Cluster cluster = metadata.fetch();
 4     // get the list of partitions with data ready to send
 5     // @return ReadyCheckResult类的三个变量解释
 6     // 1.Set readyNodes 准备好发送的节点
 7     // 2.long nextReadyCheckDelayMs 下次检查节点的延迟时间
 8     // 3.Set unknownLeaderTopics 哪些topic找不到leader节点
 9     RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
10     // if there are any partitions whose leaders are not known yet, force metadata update
11     // 如果有些topic不知道leader信息,更新metadata
12     if (!result.unknownLeaderTopics.isEmpty()) {
13         // The set of topics with unknown leader contains topics with leader election pending as well as
14         // topics which may have expired. Add the topic again to metadata to ensure it is included
15         // and request metadata update, since there are messages to send to the topic.
16         for (String topic : result.unknownLeaderTopics)
17             this.metadata.add(topic);
18         this.metadata.requestUpdate();
19     }
20 
21     // 去除不能发送信息的节点
22     // remove any nodes we aren't ready to send to
23     Iterator iter = result.readyNodes.iterator();
24     long notReadyTimeout = Long.MAX_VALUE;
25     while (iter.hasNext()) {
26         Node node = iter.next();
27         if (!this.client.ready(node, now)) {
28             iter.remove();
29             notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
30         }
31     }
32 
33     // 获取将要发送的消息
34     // create produce requests
35     Map> batches = this.accumulator.drain(cluster, result.readyNodes,
36             this.maxRequestSize, now);
37 
38     // 保证发送消息的顺序
39     if (guaranteeMessageOrder) {
40         // Mute all the partitions drained
41         for (List batchList : batches.values()) {
42             for (ProducerBatch batch : batchList)
43                 this.accumulator.mutePartition(batch.topicPartition);
44         }
45     }
46 
47     // 过期的batch
48     List expiredBatches = this.accumulator.expiredBatches(this.requestTimeout, now);
49     boolean needsTransactionStateReset = false;
50     // Reset the producer id if an expired batch has previously been sent to the broker. Also update the metrics
51     // for expired batches. see the documentation of @TransactionState.resetProducerId to understand why
52     // we need to reset the producer id here.
53     if (!expiredBatches.isEmpty())
54         log.trace("Expired {} batches in accumulator", expiredBatches.size());
55     for (ProducerBatch expiredBatch : expiredBatches) {
56         failBatch(expiredBatch, -1, NO_TIMESTAMP, expiredBatch.timeoutException());
57         if (transactionManager != null && expiredBatch.inRetry()) {
58             needsTransactionStateReset = true;
59         }
60         this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);
61     }
62     if (needsTransactionStateReset) {
63         transactionManager.resetProducerId();
64         return 0;
65     }
66     sensors.updateProduceRequestMetrics(batches);
67     // If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately
68     // loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data
69     // that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes
70     // with sendable data that aren't ready to send since they would cause busy looping.
71     // 到底返回的这个pollTimeout是啥,我觉得用英文的注释解释比较清楚
72     // 1.The amount of time to block if there is nothing to do
73     // 2.waiting for a channel to become ready; if zero, block indefinitely;
74     long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
75     if (!result.readyNodes.isEmpty()) {
76         log.trace("Nodes with data ready to send: {}", result.readyNodes);
77         // if some partitions are already ready to be sent, the select time would be 0;
78         // otherwise if some partition already has some data accumulated but not ready yet,
79         // the select time will be the time difference between now and its linger expiry time;
80         // otherwise the select time will be the time difference between now and the metadata expiry time;
81         pollTimeout = 0;
82     }
83 
84     // 发送消息
85     // 最后调用client.send()
86     sendProduceRequests(batches, now);
87     return pollTimeout;
88 }

  其中也需要了解这个方法:org.apache.kafka.clients.producer.internals.RecordAccumulator#ready。返回的类中3个关键参数的解释都在注释里。烦请看注释,我解释不好的地方可以看英文,原汁原味最好:

 1 /**
 2  * Get a list of nodes whose partitions are ready to be sent, and the earliest time at which any non-sendable
 3  * partition will be ready; Also return the flag for whether there are any unknown leaders for the accumulated
 4  * partition batches.
 5  * 

6 * A destination node is ready to send data if: 7 *

    8 *
  1. There is at least one partition that is not backing off its send 9 *
  2. and those partitions are not muted (to prevent reordering if 10 * {@value org.apache.kafka.clients.producer.ProducerConfig#MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION} 11 * is set to one)
  3. 12 *
  4. and any of the following are true
  5. 13 *
      14 *
    • The record set is full
    • 15 *
    • The record set has sat in the accumulator for at least lingerMs milliseconds
    • 16 *
    • The accumulator is out of memory and threads are blocking waiting for data (in this case all partitions 17 * are immediately considered ready).
    • 18 *
    • The accumulator has been closed
    • 19 *
    20 *
21 */ 22 /** 23 * @return ReadyCheckResult类的三个变量解释 24 * 1.Set readyNodes 准备好发送的节点 25 * 2.long nextReadyCheckDelayMs 下次检查节点的延迟时间 26 * 3.Set unknownLeaderTopics 哪些topic找不到leader节点 27 * 28 * 一个节点满足以下任一条件则表示可以发送数据 29 * 1.batch满了 30 * 2.batch没满,但是等了lingerMs的时间 31 * 3.accumulator满了 32 * 4.accumulator关了 33 */ 34 public ReadyCheckResult ready(Cluster cluster, long nowMs) { 35 Set readyNodes = new HashSet<>(); 36 long nextReadyCheckDelayMs = Long.MAX_VALUE; 37 Set unknownLeaderTopics = new HashSet<>(); 38 boolean exhausted = this.free.queued() > 0; 39 for (Map.Entry> entry : this.batches.entrySet()) { 40 TopicPartition part = entry.getKey(); 41 Deque deque = entry.getValue(); 42 Node leader = cluster.leaderFor(part); 43 synchronized (deque) { 44 // leader没有且队列非空则添加unknownLeaderTopics 45 if (leader == null && !deque.isEmpty()) { 46 // This is a partition for which leader is not known, but messages are available to send. 47 // Note that entries are currently not removed from batches when deque is empty. 48 unknownLeaderTopics.add(part.topic()); 49 50 // 如果readyNodes不包含leader且muted不包含part 51 // mute这个变量跟producer端的一个配置有关系:max.in.flight.requests.per.connection=1 52 // 主要防止topic同分区下的消息乱序问题,限制了producer在单个broker连接上能够发送的未响应请求的数量 53 // 如果设置为1,则producer在收到响应之前无法再给该broker发送该topic的PRODUCE请求 54 } else if (!readyNodes.contains(leader) && !muted.contains(part)) { 55 ProducerBatch batch = deque.peekFirst(); 56 if (batch != null) { 57 long waitedTimeMs = batch.waitedTimeMs(nowMs); 58 boolean backingOff = batch.attempts() > 0 && waitedTimeMs < retryBackoffMs; 59 // 等待时间 60 long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs; 61 // batch满了 62 boolean full = deque.size() > 1 || batch.isFull(); 63 // batch过期 64 boolean expired = waitedTimeMs >= timeToWaitMs; 65 boolean sendable = full || expired || exhausted || closed || flushInProgress(); 66 if (sendable && !backingOff) { 67 readyNodes.add(leader); 68 } else { 69 long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0); 70 // Note that this results in a conservative estimate since an un-sendable partition may have 71 // a leader that will later be found to have sendable data. However, this is good enough 72 // since we'll just wake up and then sleep again for the remaining time. 73 // 目前还没有leader,下次重试 74 nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs); 75 } 76 } 77 } 78 } 79 } 80 return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeaderTopics); 81 }

  还有一个方法就是org.apache.kafka.clients.producer.internals.RecordAccumulator#drain,从accumulator缓冲区获取要发送的数据,最大一次性发max.request.size大小的数据(最上面的配置参数里有):

  1 /**
  2  * Drain all the data for the given nodes and collate them into a list of batches that will fit within the specified
  3  * size on a per-node basis. This method attempts to avoid choosing the same topic-node over and over.
  4  *
  5  * @param cluster The current cluster metadata
  6  * @param nodes The list of node to drain
  7  * @param maxSize The maximum number of bytes to drain
  8  * maxSize也就是producer端配置参数max.request.size来控制的,一次最多发多少
  9  * @param now The current unix time in milliseconds
 10  * @return A list of {@link ProducerBatch} for each node specified with total size less than the requested maxSize.
 11  */
 12 public Map> drain(Cluster cluster, Set nodes, int maxSize, long now) {
 13     if (nodes.isEmpty())
 14         return Collections.emptyMap();
 15     Map> batches = new HashMap<>();
 16     for (Node node : nodes) {
 17         // for循环获取要发的batch
 18         List ready = drainBatchesForOneNode(cluster, node, maxSize, now);
 19         batches.put(node.id(), ready);
 20     }
 21     return batches;
 22 }
 23 
 24 private List drainBatchesForOneNode(Cluster cluster, Node node, int maxSize, long now) {
 25     int size = 0;
 26     // 获取node的partition
 27     List parts = cluster.partitionsForNode(node.id());
 28     List ready = new ArrayList<>();
 29     /* to make starvation less likely this loop doesn't start at 0 */
 30     // 避免每次都从一个partition取,要雨露均沾
 31     int start = drainIndex = drainIndex % parts.size();
 32     do {
 33         PartitionInfo part = parts.get(drainIndex);
 34         TopicPartition tp = new TopicPartition(part.topic(), part.partition());
 35         this.drainIndex = (this.drainIndex + 1) % parts.size();
 36 
 37         // Only proceed if the partition has no in-flight batches.
 38         if (isMuted(tp, now))
 39             continue;
 40 
 41         Deque deque = getDeque(tp);
 42         if (deque == null)
 43             continue;
 44 
 45         // 加锁,不用说了吧
 46         synchronized (deque) {
 47             // invariant: !isMuted(tp,now) && deque != null
 48             ProducerBatch first = deque.peekFirst();
 49             if (first == null)
 50                 continue;
 51 
 52             // first != null
 53             // 查看是否在backoff期间
 54             boolean backoff = first.attempts() > 0 && first.waitedTimeMs(now) < retryBackoffMs;
 55             // Only drain the batch if it is not during backoff period.
 56             if (backoff)
 57                 continue;
 58 
 59             // 超过maxSize且ready里有东西
 60             if (size + first.estimatedSizeInBytes() > maxSize && !ready.isEmpty()) {
 61                 // there is a rare case that a single batch size is larger than the request size due to
 62                 // compression; in this case we will still eventually send this batch in a single request
 63                 // 有一种特殊的情况,batch的大小超过了maxSize,且batch是空的。也就是一个batch大小直接大于一次发送的maxSize
 64                 // 这种情况下最终还是会发送这个batch在一次请求
 65                 break;
 66             } else {
 67                 if (shouldStopDrainBatchesForPartition(first, tp))
 68                     break;
 69 
 70                 // 这块配置下面会讲
 71                 boolean isTransactional = transactionManager != null ? transactionManager.isTransactional() : false;
 72                 ProducerIdAndEpoch producerIdAndEpoch =
 73                     transactionManager != null ? transactionManager.producerIdAndEpoch() : null;
 74                 ProducerBatch batch = deque.pollFirst();
 75                 if (producerIdAndEpoch != null && !batch.hasSequence()) {
 76                     // If the batch already has an assigned sequence, then we should not change the producer id and
 77                     // sequence number, since this may introduce duplicates. In particular, the previous attempt
 78                     // may actually have been accepted, and if we change the producer id and sequence here, this
 79                     // attempt will also be accepted, causing a duplicate.
 80                     //
 81                     // Additionally, we update the next sequence number bound for the partition, and also have
 82                     // the transaction manager track the batch so as to ensure that sequence ordering is maintained
 83                     // even if we receive out of order responses.
 84                     batch.setProducerState(producerIdAndEpoch, transactionManager.sequenceNumber(batch.topicPartition), isTransactional);
 85                     transactionManager.incrementSequenceNumber(batch.topicPartition, batch.recordCount);
 86                     log.debug("Assigned producerId {} and producerEpoch {} to batch with base sequence " +
 87                             "{} being sent to partition {}", producerIdAndEpoch.producerId,
 88                         producerIdAndEpoch.epoch, batch.baseSequence(), tp);
 89 
 90                     transactionManager.addInFlightBatch(batch);
 91                 }
 92                 // 添加batch,并且close
 93                 batch.close();
 94                 size += batch.records().sizeInBytes();
 95                 ready.add(batch);
 96 
 97                 batch.drained(now);
 98             }
 99         }
100     } while (start != drainIndex);
101     return ready;
102 }

三.幂等性producer

  上面说到一个参数,enable.idempotence。0.11.0.0版本引入的幂等性producer表示它的发送操作是幂等的,也就是说,不会存在各种错误导致的重复消息。(比如说瞬时的发送错误可能导致producer端出现重试,同一个消息可能发送多次)

  producer发送到broker端的每批消息都会有一个序列号(用于去重),Kakfa会把这个序列号存在底层日志,保存序列号只需要几个字节,开销很小。producer端会分配一个PID,对于PID、分区和序列号的关系,可以想象成一个哈希表,key就是(PID,分区),value就是序列号。比如第一次给broker发送((PID=1,分区=1),序列号=2),第二次发送的value比2小或者等于2,则broker会拒绝PRODUCE请求,实现去重。

  这个只能保证单个producer实例的EOS语义

你可能感兴趣的:(Kafka源码分析及图解原理之Producer端)