SLAM学习——建图问题(一)

1.单目稠密地图的构建

在上述中,我们讨论的是稀疏地图的构建,但是在实际的定位、导航和壁障过程中,我们需要有稠密地图。常见的单目稠密地图的构建思路有:
1.单目:通过运动,得出运动轨迹,计算出运动的关系,通过三角测量计算出像素深度。(同下)
2.双目:利用俩个相机的视差计算出像素的深度。(吃力不讨好,但是大型场合可能有比较好的效果。)
3.RGBD:自带深度图,可直接得到像素的深度。(比较好,但是不适合大型场合)

对于单目而言,即我们提到的第一种方法,通过单目建立稠密地图:
1.提取特征点,然后在很多图像中,进行特征点的匹配,跟踪特征点在各张图像的轨迹(经常用ORB特征提取)
2.然后通过三角测量估计每一个像素的深度。在这里,我们需要利用很多的三角测量使得某点的深度进行收敛,得到确切的深度信息。

在稠密深度地图中,无法对每个像素计算其描述子,所以在稠密估计问题中,匹配成为很重要的一环,我们用到了极线搜索和块匹配技术,极线搜索的原理如下图所示:

SLAM学习——建图问题(一)_第1张图片

而块匹配技术就相当于把像素的比较换成了块的比较,我们直接上代码可得:

#include 
#include 
#include 
using namespace std;
#include 

// for sophus
#include  //这里使用了sophus这个工具,使用SE3
using Sophus::SE3;

// for eigen
#include 
#include 
using namespace Eigen;

#include 
#include 
#include 

using namespace cv;
// ------------------------------------------------------------------
// parameters
const int boarder = 20;     // 边缘宽度
const int width = 640;      // 宽度
const int height = 480;     // 高度
const double fx = 481.2f;   // 相机内参
const double fy = -480.0f;
const double cx = 319.5f;
const double cy = 239.5f;
const int ncc_window_size = 2;  // NCC 取的窗口半宽度
const int ncc_area = (2*ncc_window_size+1)*(2*ncc_window_size+1); // NCC窗口面积
const double min_cov = 0.1; // 收敛判定:最小方差
const double max_cov = 10;  // 发散判定:最大方差

// ------------------------------------------------------------------
// 重要的函数
// 从 REMODE 数据集读取数据
bool readDatasetFiles(
    const string& path,
    vector<string>& color_image_files,
    vector& poses
);
// 根据新的图像更新深度估计
bool update(
    const Mat& ref,
    const Mat& curr,
    const SE3& T_C_R,
    Mat& depth,
    Mat& depth_cov
);
// 极线搜索
bool epipolarSearch(
    const Mat& ref,
    const Mat& curr,
    const SE3& T_C_R,
    const Vector2d& pt_ref,
    const double& depth_mu,
    const double& depth_cov,
    Vector2d& pt_curr
);
// 更新深度滤波器
bool updateDepthFilter(
    const Vector2d& pt_ref,
    const Vector2d& pt_curr,
    const SE3& T_C_R,
    Mat& depth,
    Mat& depth_cov
);
// 计算 NCC 评分
double NCC( const Mat& ref, const Mat& curr, const Vector2d& pt_ref, const Vector2d& pt_curr );
// 双线性灰度插值
inline double getBilinearInterpolatedValue( const Mat& img, const Vector2d& pt ) {
    uchar* d = & img.data[ int(pt(1,0))*img.step+int(pt(0,0)) ];
    double xx = pt(0,0) - floor(pt(0,0));
    double yy = pt(1,0) - floor(pt(1,0));
    return  (( 1-xx ) * ( 1-yy ) * double(d[0]) +
            xx* ( 1-yy ) * double(d[1]) +
            ( 1-xx ) *yy* double(d[img.step]) +
            xx*yy*double(d[img.step+1]))/255.0;
}

// ------------------------------------------------------------------
// 一些小工具
// 显示估计的深度图
bool plotDepth( const Mat& depth );
// 像素到相机坐标系
inline Vector3d px2cam ( const Vector2d px ) {
    return Vector3d (
        (px(0,0) - cx)/fx,
        (px(1,0) - cy)/fy,
        1
    );
}
// 相机坐标系到像素
inline Vector2d cam2px ( const Vector3d p_cam ) {
    return Vector2d (
        p_cam(0,0)*fx/p_cam(2,0) + cx,
        p_cam(1,0)*fy/p_cam(2,0) + cy
    );
}
// 检测一个点是否在图像边框内
inline bool inside( const Vector2d& pt ) {
    return pt(0,0) >= boarder && pt(1,0)>=boarder
        && pt(0,0)+boarder1,0)+boarder<=height;
}
// 显示极线匹配
void showEpipolarMatch( const Mat& ref, const Mat& curr, const Vector2d& px_ref, const Vector2d& px_curr );
// 显示极线
void showEpipolarLine( const Mat& ref, const Mat& curr, const Vector2d& px_ref, const Vector2d& px_min_curr, const Vector2d& px_max_curr );
// ------------------------------------------------------------------
int main( int argc, char** argv )
{
    // 从数据集读取数据
    vector<string> color_image_files;
    vector poses_TWC;
    //该函数的功能是将图片名和位姿从文件中提取出来并进行存储
    //其中“/home/.../data”是存放文件的路径
    bool ret = readDatasetFiles(“/home/.../data”, color_image_files, poses_TWC );
    if ( ret==false )
    {
        cout<<"Reading image files failed!"<return -1;
    }
    cout<<"read total "<" files."<// 第一张图
    Mat ref = imread( color_image_files[0], 0 );               // gray-scale image
    SE3 pose_ref_TWC = poses_TWC[0];
    double init_depth   = 3.0;    // 深度初始值
    double init_cov2    = 3.0;    // 方差初始值
    Mat depth( height, width, CV_64F, init_depth );             // 深度图
    Mat depth_cov( height, width, CV_64F, init_cov2 );          // 深度图方差

    for ( int index=1; indexcout<<"*** loop "<" ***"<0 );
        if (curr.data == nullptr) continue;
        SE3 pose_curr_TWC = poses_TWC[index];
        SE3 pose_T_C_R = pose_curr_TWC.inverse() * pose_ref_TWC; // 坐标转换关系: T_C_W * T_W_R = T_C_R
        update( ref, curr, pose_T_C_R, depth, depth_cov );
        plotDepth( depth );
        imshow("image", curr);
        waitKey(1);
    }

    cout<<"estimation returns, saving depth map ..."<"depth.png", depth );
    cout<<"done."<return 0;
}

bool readDatasetFiles(
    const string& path,
    vector< string >& color_image_files,
    std::vector& poses
)
{
    ifstream fin( path+"/first_200_frames_traj_over_table_input_sequence.txt");
    if ( !fin ) return false;
    while ( !fin.eof() )
    {
    // 数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw ,注意是 TWC 而非 TCW
        string image;
        fin>>image;
        double data[7];
        for ( double& d:data ) fin>>d;

        color_image_files.push_back( path+string("/images/")+image );
        poses.push_back(
            SE3( Quaterniond(data[6], data[3], data[4], data[5]),
                 Vector3d(data[0], data[1], data[2]))
        );
        if ( !fin.good() ) break;
    }
    return true;
}

// 对整个深度图进行更新
bool update(const Mat& ref, const Mat& curr, const SE3& T_C_R, Mat& depth, Mat& depth_cov )
{
#pragma omp parallel for
    for ( int x=boarder; x#pragma omp parallel for
        for ( int y=boarder; y// 遍历每个像素
            if ( depth_cov.ptr<double>(y)[x] < min_cov || depth_cov.ptr<double>(y)[x] > max_cov ) // 深度已收敛或发散
                continue;
            // 在极线上搜索 (x,y) 的匹配
            Vector2d pt_curr;
            bool ret = epipolarSearch (
                ref,
                curr,
                T_C_R,
                Vector2d(x,y),
                depth.ptr<double>(y)[x],
                sqrt(depth_cov.ptr<double>(y)[x]),
                pt_curr
            );

            if ( ret == false ) // 匹配失败
                continue;

      // 取消该注释以显示匹配
            // showEpipolarMatch( ref, curr, Vector2d(x,y), pt_curr );

            // 匹配成功,更新深度图
            updateDepthFilter( Vector2d(x,y), pt_curr, T_C_R, depth, depth_cov );
        }
}

// 极线搜索
bool epipolarSearch(
    const Mat& ref, const Mat& curr,
    const SE3& T_C_R, const Vector2d& pt_ref,
    const double& depth_mu, const double& depth_cov,
    Vector2d& pt_curr )
{
    Vector3d f_ref = px2cam( pt_ref );
    f_ref.normalize();
    Vector3d P_ref = f_ref*depth_mu;    // 参考帧的 P 向量

    Vector2d px_mean_curr = cam2px( T_C_R*P_ref ); // 按深度均值投影的像素
    double d_min = depth_mu-3*depth_cov, d_max = depth_mu+3*depth_cov;
    if ( d_min<0.1 ) d_min = 0.1;
    Vector2d px_min_curr = cam2px( T_C_R*(f_ref*d_min) );   // 按最小深度投影的像素
    Vector2d px_max_curr = cam2px( T_C_R*(f_ref*d_max) );   // 按最大深度投影的像素

    Vector2d epipolar_line = px_max_curr - px_min_curr; // 极线(线段形式)
    Vector2d epipolar_direction = epipolar_line;        // 极线方向
    epipolar_direction.normalize();
    double half_length = 0.5*epipolar_line.norm();  // 极线线段的半长度
    if ( half_length>100 ) half_length = 100;   // 我们不希望搜索太多东西

  // 取消此句注释以显示极线(线段)
    // showEpipolarLine( ref, curr, pt_ref, px_min_curr, px_max_curr );

    // 在极线上搜索,以深度均值点为中心,左右各取半长度
    double best_ncc = -1.0;
    Vector2d best_px_curr;
    for ( double l=-half_length; l<=half_length; l+=0.7 )  // l+=sqrt(2)
    {
        Vector2d px_curr = px_mean_curr + l*epipolar_direction;  // 待匹配点
        if ( !inside(px_curr) )
            continue;
        // 计算待匹配点与参考帧的 NCC
        double ncc = NCC( ref, curr, pt_ref, px_curr );
        if ( ncc>best_ncc )
        {
            best_ncc = ncc;
            best_px_curr = px_curr;
        }
    }
    if ( best_ncc < 0.85f )      // 只相信 NCC 很高的匹配
        return false;
    pt_curr = best_px_curr;
    return true;
}

double NCC (
    const Mat& ref, const Mat& curr,
    const Vector2d& pt_ref, const Vector2d& pt_curr
)
{
    // 零均值-归一化互相关
    // 先算均值
    double mean_ref = 0, mean_curr = 0;
    vector<double> values_ref, values_curr; // 参考帧和当前帧的均值
    for ( int x=-ncc_window_size; x<=ncc_window_size; x++ )
        for ( int y=-ncc_window_size; y<=ncc_window_size; y++ )
        {
            double value_ref = double(ref.ptr( int(y+pt_ref(1,0)) )[ int(x+pt_ref(0,0)) ])/255.0;
            mean_ref += value_ref;

            double value_curr = getBilinearInterpolatedValue( curr, pt_curr+Vector2d(x,y) );
            mean_curr += value_curr;

            values_ref.push_back(value_ref);
            values_curr.push_back(value_curr);
        }

    mean_ref /= ncc_area;
    mean_curr /= ncc_area;

  // 计算 Zero mean NCC
    double numerator = 0, demoniator1 = 0, demoniator2 = 0;
    for ( int i=0; idouble n = (values_ref[i]-mean_ref) * (values_curr[i]-mean_curr);
        numerator += n;
        demoniator1 += (values_ref[i]-mean_ref)*(values_ref[i]-mean_ref);
        demoniator2 += (values_curr[i]-mean_curr)*(values_curr[i]-mean_curr);
    }
    return numerator / sqrt( demoniator1*demoniator2+1e-10 );   // 防止分母出现零
}

bool updateDepthFilter(
    const Vector2d& pt_ref,
    const Vector2d& pt_curr,
    const SE3& T_C_R,
    Mat& depth,
    Mat& depth_cov
)
{
    // 我是一只喵
    // 不知道这段还有没有人看
    // 用三角化计算深度
    SE3 T_R_C = T_C_R.inverse();
    Vector3d f_ref = px2cam( pt_ref );
    f_ref.normalize();
    Vector3d f_curr = px2cam( pt_curr );
    f_curr.normalize();

    // 方程
    // d_ref * f_ref = d_cur * ( R_RC * f_cur ) + t_RC
    // => [ f_ref^T f_ref, -f_ref^T f_cur ] [d_ref] = [f_ref^T t]
    //    [ f_cur^T f_ref, -f_cur^T f_cur ] [d_cur] = [f_cur^T t]
    // 二阶方程用克莱默法则求解并解之
    Vector3d t = T_R_C.translation();
    Vector3d f2 = T_R_C.rotation_matrix() * f_curr;
    Vector2d b = Vector2d ( t.dot ( f_ref ), t.dot ( f2 ) );
    double A[4];
    A[0] = f_ref.dot ( f_ref );
    A[2] = f_ref.dot ( f2 );
    A[1] = -A[2];
    A[3] = - f2.dot ( f2 );
    double d = A[0]*A[3]-A[1]*A[2];
    Vector2d lambdavec =
        Vector2d (  A[3] * b ( 0,0 ) - A[1] * b ( 1,0 ),
                    -A[2] * b ( 0,0 ) + A[0] * b ( 1,0 )) /d;
    Vector3d xm = lambdavec ( 0,0 ) * f_ref;
    Vector3d xn = t + lambdavec ( 1,0 ) * f2;
    Vector3d d_esti = ( xm+xn ) / 2.0;  // 三角化算得的深度向量
    double depth_estimation = d_esti.norm();   // 深度值

    // 计算不确定性(以一个像素为误差)
    Vector3d p = f_ref*depth_estimation;
    Vector3d a = p - t;
    double t_norm = t.norm();
    double a_norm = a.norm();
    double alpha = acos( f_ref.dot(t)/t_norm );
    double beta = acos( -a.dot(t)/(a_norm*t_norm));
    double beta_prime = beta + atan(1/fx);
    double gamma = M_PI - alpha - beta_prime;
    double p_prime = t_norm * sin(beta_prime) / sin(gamma);
    double d_cov = p_prime - depth_estimation;
    double d_cov2 = d_cov*d_cov;

    // 高斯融合
    double mu = depth.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ];
    double sigma2 = depth_cov.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ];

    double mu_fuse = (d_cov2*mu+sigma2*depth_estimation) / ( sigma2+d_cov2);
    double sigma_fuse2 = ( sigma2 * d_cov2 ) / ( sigma2 + d_cov2 );

    depth.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ] = mu_fuse;
    depth_cov.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ] = sigma_fuse2;

    return true;
}
bool plotDepth(const Mat& depth)
{
    imshow( "depth", depth*0.4 );
    waitKey(1);
}

Cmakelist 文件如下所示:

cmake_minimum_required(VERSION 2.8.3)
project(dense_mapping)

set(CMAKE_CXX_FLAGS "-std=c++11 -march=native -O3 -fopenmp")
set(OpenCV_DIR /usr/local/opencv320/share/OpenCV)
#set(Sophus_LIBRARIES libSophus.so)
find_package(OpenCV 3.2 REQUIRED )
include_directories(SYSTEM ${OpenCV_INCLUDE_DIRS} /usr/local/opencv320/include)
find_package( "/usr/local/opencv320/include/opencv2" )
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)

find_package(Eigen3 REQUIRED)
include_directories(${EIGEN3_INCLUDE_DIR})

set( Sophus_INCLUDE_DIRS "/usr/local/include" )
set( Sophus_LIBS "/usr/local/lib/libSophus.so" )

include_directories(include)
include_directories(
  ${catkin_INCLUDE_DIRS}
  ${OpenCV_INCLUDE_DIRS}
  ${Sophus_LIBS}
)
add_executable(dense_mapping src/dense_mapping.cpp)
target_link_libraries(dense_mapping
  ${catkin_LIBRARIES}
  ${OpenCV_LIBRARIES}
  ${EIGEN3_INCLUDE_DIR}
   ${Sophus_LIBS}
)

以上程序较为复杂,其运算的结果如下:

SLAM学习——建图问题(一)_第2张图片

通过不断的循环我们可以不断的更新其相片的深度值.

你可能感兴趣的:(SLAM,《SLAM,14讲》个人提炼笔记)