Django基础五之django模型层(一)单表操作
一 ORM简介
- MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的工作量,不需要面对因数据库变更而导致的无效劳动
- ORM是“对象-关系-映射”的简称。(Object Relational Mapping,简称ORM)(将来会学一个sqlalchemy,是和他很像的,但是django的orm没有独立出来让别人去使用,虽然功能比sqlalchemy更强大,但是别人用不了)
- 类对象--->sql--->pymysql--->mysql服务端--->磁盘,orm其实就是将类对象的语法翻译成sql语句的一个引擎,明白orm是什么了,剩下的就是怎么使用orm,怎么来写类对象关系语句。
| 原生sql和python的orm代码对比 |
#sql中的表
#创建表:
CREATE TABLE employee(
id INT PRIMARY KEY auto_increment ,
name VARCHAR (20),
gender BIT default 1,
birthday DATA ,
department VARCHAR (20),
salary DECIMAL (8,2) unsigned,
);
#sql中的表纪录
#添加一条表纪录:
INSERT employee (name,gender,birthday,salary,department)
VALUES ("alex",1,"1985-12-12",8000,"保洁部");
#查询一条表纪录:
SELECT * FROM employee WHERE age=24;
#更新一条表纪录:
UPDATE employee SET birthday="1989-10-24" WHERE id=1;
#删除一条表纪录:
DELETE FROM employee WHERE name="alex"
#python的类
class Employee(models.Model):
id=models.AutoField(primary_key=True)
name=models.CharField(max_length=32)
gender=models.BooleanField()
birthday=models.DateField()
department=models.CharField(max_length=32)
salary=models.DecimalField(max_digits=8,decimal_places=2)
#python的类对象
#添加一条表纪录:
emp=Employee(name="alex",gender=True,birthday="1985-12-12",epartment="保洁部")
emp.save()
#查询一条表纪录:
Employee.objects.filter(age=24)
#更新一条表纪录:
Employee.objects.filter(id=1).update(birthday="1989-10-24")
#删除一条表纪录:
Employee.objects.filter(name="alex").delete()
二 单表操作
一、创建表
创建模型
| 创建名为app01的app,在app01下的models.py中创建模型: |
from django.db import models
# Create your models here.
class UserInfo(models.Model):
id = models.AutoField(primary_key=True)#如果表里面没有写主键,表里面会自动生成一个自增主键字段,叫做id字段,orm要求每个表里面必须要写一个主键
name = models.CharField(max_length=16)#和varchar(16)是一样的,16个字符
age = models.IntegerField() #int
current_date = models.DateField()#必须存这种格式"2018-12-12"
接下来要创建对应的数据,连接上对应的数据库,然后执行创建表的命令,翻译成相应的sql,然后到数据库里面执行,从而创建对应的表。多了一步orm翻译成sql的过程,效率低了,但是没有太大的损伤,还能忍受,当你不能忍的时候,你可以自己写原生sql语句,一般的场景orm都够用了,开发起来速度更快,写法更贴近应用程序开发,还有一点就是数据库升级或者变更,那么你之前用sql语句写的数据库操作,那么就需要将sql语句全部修改,但是如果你用orm,就不需要担心这个问题,不管是你从mysql变更到oracle还是从oracle更换到mysql,你如果用的是orm来搞的,你只需要修改一下orm的引擎(配置文件里面改一些配置就搞定)就可以了,你之前写的那些orm语句还是会自动翻译成对应数据库的sql语句。
简单提一下sqlite数据库:
不连接mysql的话,默认连接的是sqlite数据库
2 .settings配置
若想将模型转为mysql数据库中的表,需要在settings中配置:
#settings.py 文件中找DATABASES这个配置,改为
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME':'bms', # 要连接的数据库,连接前需要创建好
'USER':'root', # 连接数据库的用户名
'PASSWORD':'', # 连接数据库的密码
'HOST':'127.0.0.1', # 连接主机,默认本级
'PORT':3306 # 端口 默认3306
},
'app01': { #可以为每个app都配置自己的数据,并且数据库还可以指定别的,也就是不一定就是mysql,也可以指定sqlite等其他的数据库
'ENGINE': 'django.db.backends.mysql',
'NAME':'bms', # 要连接的数据库,连接前需要创建好
'USER':'root', # 连接数据库的用户名
'PASSWORD':'', # 连接数据库的密码
'HOST':'127.0.0.1', # 连接主机,默认本级
'PORT':3306 # 端口 默认3306
}
}
注意1:NAME即数据库的名字,在mysql连接前该数据库必须已经创建,而上面的sqlite数据库下的db.sqlite3则是项目自动创建 USER和PASSWORD分别是数据库的用户名和密码。设置完后,再启动我们的Django项目前,我们需要激活我们的mysql。然后,启动项目,会报错:no module named MySQLdb 。这是因为django默认你导入的驱动是MySQLdb,可是MySQLdb 对于py3有很大问题,所以我们需要的驱动是PyMySQL 所以,我们只需要找到项目名文件下的__init__,在里面写入:
import pymysql
pymysql.install_as_MySQLdb()
最后通过两条数据库迁移命令即可在指定的数据库中创建表 :
python manage.py makemigrations #生成记录,每次修改了models里面的内容或者添加了新的app,新的app里面写了models里面的内容,都要执行这两条
python manage.py migrate #执行上面这个语句的记录来创建表,生成的表名字前面会自带应用的名字,例如:你的userinfo表在mysql里面叫做app01_userinfo表
关于同步指令的执行简单原理:
在执行 python manager.py magrations 时django 会在相应的 app 的migration文件夹下面生成 一个python脚本文件
在执行 python manager.py migrte 时 django才会生成数据库表,那么django是如何生成数据库表的呢,
django是根据 migration下面的脚本文件来生成数据表的
每个migration文件夹下面有多个脚本,那么django是如何知道该执行那个文件的呢,django有一张django-migrations表,表中记录了已经执行的脚本,那么表中没有的就是还没执行的脚本,则 执行migrate的时候就只执行表中没有记录的那些脚本。
有时在执行 migrate 的时候如果发现没有生成相应的表,可以看看在 django-migrations表中看看 脚本是否已经执行了,
可以删除 django-migrations 表中的记录 和 数据库中相应的 表 , 然后重新 执行
通过pycharm提供的功能来执行manage.py相关的指令:
3.更多字段和参数
每个字段有一些特有的参数,例如,CharField需要max_length参数来指定VARCHAR
数据库字段的大小。还有一些适用于所有字段的通用参数。 这些参数在文档中有详细定义,这里我们只简单介绍一些最常用的:
更多字段:
<1> CharField 字符串字段, 用于较短的字符串.
CharField 要求必须有一个参数 maxlength, 用于从数据库层和Django校验层限制该字段所允许的最大字符数.
<2> IntegerField #用于保存一个整数.
<3> DecimalField #一个浮点数. 必须 提供两个参数:
参数 描述
max_digits 总位数(不包括小数点和符号)
decimal_places 小数位数
举例来说, 要保存最大值为 999 (小数点后保存2位),你要这样定义字段:
models.DecimalField(..., max_digits=5, decimal_places=2)
要保存最大值一百万(小数点后保存10位)的话,你要这样定义:
models.DecimalField(..., max_digits=17, decimal_places=10) #max_digits大于等于17就能存储百万以上的数了
admin 用一个文本框()表示该字段保存的数据.
<4> AutoField
一个 IntegerField, 添加记录时它会自动增长. 你通常不需要直接使用这个字段;
自定义一个主键:my_id=models.AutoField(primary_key=True)
如果你不指定主键的话,系统会自动添加一个主键字段到你的 model.
<5> BooleanField
A true/false field. admin 用 checkbox 来表示此类字段.
<6> TextField #一个容量很大的文本字段.
admin 用一个
更多参数:
(1)null
如果为True,Django 将用NULL 来在数据库中存储空值。 默认值是 False.
(1)blank
如果为True,该字段允许不填。默认为False。
要注意,这与 null 不同。null纯粹是数据库范畴的,而 blank 是数据验证范畴的。
如果一个字段的blank=True,表单的验证将允许该字段是空值。如果字段的blank=False,该字段就是必填的。
(2)default
字段的默认值。可以是一个值或者可调用对象。如果可调用 ,每有新对象被创建它都会被调用,如果你的字段没有设置可以为空,那么将来如果我们后添加一个字段,这个字段就要给一个default值
(3)primary_key
如果为True,那么这个字段就是模型的主键。如果你没有指定任何一个字段的primary_key=True,
Django 就会自动添加一个IntegerField字段做为主键,所以除非你想覆盖默认的主键行为,
否则没必要设置任何一个字段的primary_key=True。
(4)unique
如果该值设置为 True, 这个数据字段的值在整张表中必须是唯一的
(5)choices
由二元组组成的一个可迭代对象(例如,列表或元组),用来给字段提供选择项。 如果设置了choices ,默认的表单将是一个选择框而不是标准的文本框,
而且这个选择框的选项就是choices 中的选项。
(6)db_index
如果db_index=True 则代表着为此字段设置数据库索引。
DatetimeField、DateField、TimeField这个三个时间字段,都可以设置如下属性。
(7)auto_now_add
配置auto_now_add=True,创建数据记录的时候会把当前时间添加到数据库。
(8)auto_now
配置上auto_now=True,每次更新数据记录的时候会更新该字段,标识这条记录最后一次的修改时间。
ORM单表操作
在python中orm的对应关系有三种:
类 ---------->表
类对象 ---------->行(记录)
类属性 ---------->表的字段(重点)
添加表纪录
创建记录方式1
student_obj = models.Student(
name='anwen',
age=23,
)
student_obj.save()
创建记录方式2
new_obj = models.Student.objects.create(name='anwen2',age=6) #写成 **{'name':'xx'}
print(new_obj) #Student object -- model对象
print(new_obj.name) #点属性,可以获取对应字段的数据
print(new_obj.age)
创建方式3 批量创建
objs_list = []
for i in range(100,3000000):
obj = models.Student(
name='xiangxixxx',
age = 10,
)
objs_list.append(obj)
models.Student.objects.bulk_create(objs_list)
创建方法4 update_or_create 有就更新,没有就创建
models.Student.objects.update_or_create(
name='妹妹2',
defaults={
'age':38,
}
)
添加日期数据
import datetime
current_date = datetime.datetime.now()
# print(current_date) #2019-07-19 12:19:26.385654
# 两种方式
# models.Brithday.objects.create(name='anwen',date=current_date)
# models.Brithday.objects.create(name='yage',date='2000-12-08')
删除表纪录
删除 delete queryset 和model对象都可以调用
models.Student.objects.get(id=3).delete() #model对象来调用的delete方法
models.Student.objects.filter(name='anwen').delete() #
models.Student.objects.all().delete() #删除所有
修改表纪录
更新 update方法 model对象不能调用更新方法 报错信息'Student' object has no attribute 'update'
只能queryset调用,如果
models.Student.objects.get(name='anwen').update(age=38)
models.Student.objects.filter(name='anwen').update(age=38)
查询表纪录
查询所有的数据 .all方法 返回的是queryset集合
all_objs = models.Student.objects.all()
#, , ]> -- 类似于列表 -- queryset集合
# for i in all_objs:
# print(i.name)
print(all_objs)
条件查询 .filter方法,返回的也是queryset集合,查询不到内容,不会 报错,返回一个空的queryset
objs = models.Student.objects.filter(id=2) #找id为2的那条记录
print(objs) #]>
objs = models.Student.objects.filter(name='anwen')
print(objs) #]>
条件查询 get方法,返回的是model对象,而且get方法有且必须只有1个结果
obj = models.Student.objects.get(id=3) #找id为3的那条记录
print(obj) #anwen
查询接口(都是重点)
<1> all(): 查询所有结果,结果是queryset类型
<2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象,结果也是queryset类型 Book.objects.filter(title='linux',price=100) #里面的多个条件用逗号分开,并且这几个条件必须都成立,是and的关系,or关系的我们后面再学,直接在这里写是搞不定or的
models.Student.objects.filter(id=7,name='anwen',age=78).update(
name='anwen',
age=78
)
#打伞形式传参
models.Student.objects.filter(**{'id':7,'name':'anwen'}).update(age=100)
models.Student.objects.all().filter(id=7) queryset类型可以调用fitler在过滤
<3> get(**kwargs): 返回与所给筛选条件相匹配的对象,不是queryset类型,是行记录对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。捕获异常try。Book.objects.get(id=1)
<4> exclude(**kwargs): 排除的意思,它包含了与所给筛选条件不匹配的对象,没有不等于的操作昂,用这个exclude,返回值是queryset类型 Book.objects.exclude(id=6),返回id不等于6的所有的对象,或者在queryset基础上调用,Book.objects.all().exclude(id=6)
# exclude(**kwargs): 排除,objects控制器和queryset集合都可以调用,返回结果是queryset类型
# query = models.Student.objects.exclude(id=1)
# print(query)
# query = models.Student.objects.filter(age=38).exclude(id=6)
# print(query)
<5> order_by(*field): queryset类型的数据来调用,对查询结果排序,默认是按照id来升序排列的,返回值还是queryset类型models.Book.objects.all().order_by('price','id') #直接写price,默认是按照price升序排列,按照字段降序排列,就写个负号就行了order_by('-price'),order_by('price','id')是多条件排序,按照price进行升序,price相同的数据,按照id进行升序
<6> reverse(): queryset类型的数据来调用,对查询结果反向排序,返回值还是queryset类型
# 排序之后反转
# query = models.Student.objects.all().order_by('id').reverse()
# print(query)
<7> count(): queryset类型的数据来调用,返回数据库中匹配查询(QuerySet)的对象数量。
<8> first(): queryset类型的数据来调用,返回第一条记录 Book.objects.all()[0] = Book.objects.all().first(),得到的都是model对象,不是queryset
<9> last(): queryset类型的数据来调用,返回最后一条记录,结果为model对象类型
<10> exists(): queryset类型的数据来调用,如果QuerySet包含数据,就返回True,否则返回False
空的queryset类型数据也有布尔值True和False,但是一般不用它来判断数据库里面是不是有数据,如果有大量的数据,你用它来判断,那么就需要查询出所有的数据,效率太差了,用count或者exits
例:all_books = models.Book.objects.all().exists() #翻译成的sql是SELECT (1) AS `a` FROM `app01_book` LIMIT 1,就是通过limit 1,取一条来看看是不是有数据
<11> values(*field): 用的比较多,queryset类型的数据来调用,返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列,model的实例化对象,而是一个可迭代的字典序列,只要是返回的queryset类型,就可以继续链式调用queryset类型的其他的查找方法,其他方法也是一样的。
<12> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列
<13> distinct(): values和values_list得到的queryset类型的数据来调用,从返回结果中剔除重复纪录,结果还是queryset
query = models.Student.objects.all().values('age').distinct()
print(query)
基于双下划线的模糊查询
Book.objects.filter(price__in=[100,200,300]) #price值等于这三个里面的任意一个的对象
Book.objects.filter(price__gt=100) #大于,大于等于是price__gte=100,别写price>100,这种参数不支持
Book.objects.filter(price__lt=100)
Book.objects.filter(price__range=[100,200]) #sql的between and,大于等于100,小于等于200
Book.objects.filter(title__contains="python") #title值中包含python的
Book.objects.filter(title__icontains="python") #不区分大小写
Book.objects.filter(title__startswith="py") #以什么开头,istartswith 不区分大小写
Book.objects.filter(pub_date__year=2012)
# all_books = models.Book.objects.filter(pub_date__year=2012) #找2012年的所有书籍
# all_books = models.Book.objects.filter(pub_date__year__gt=2012)#找大于2012年的所有书籍
all_books = models.Book.objects.filter(pub_date__year=2019,pub_date__month=2)#找2019年月份的所有书籍,如果明明有结果,你却查不出结果,是因为mysql数据库的时区和咱们django的时区不同导致的,了解一下就行了,你需要做的就是将django中的settings配置文件里面的USE_TZ = True改为False,就可以查到结果了,以后这个值就改为False,而且就是因为咱们用的mysql数据库才会有这个问题,其他数据库没有这个问题。
补充
#关于django连接mysql的时指定严格模式的配置
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'mxshop',
'HOST': '127.0.0.1',
'PORT': '3306',
'USER': 'root',
'PASSWORD': '123',
'OPTIONS': {
"init_command": "SET default_storage_engine='INNODB'",
#'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
}
}
}
DATABASES['default']['OPTIONS']['init_command'] = "SET sql_mode='STRICT_TRANS_TABLES'"
附ORM字段与数据库实际字段的对应关系:
'AutoField': 'integer AUTO_INCREMENT',
'BigAutoField': 'bigint AUTO_INCREMENT',
'BinaryField': 'longblob',
'BooleanField': 'bool',
'CharField': 'varchar(%(max_length)s)',
'CommaSeparatedIntegerField': 'varchar(%(max_length)s)',
'DateField': 'date',
'DateTimeField': 'datetime',
'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)',
'DurationField': 'bigint',
'FileField': 'varchar(%(max_length)s)',
'FilePathField': 'varchar(%(max_length)s)',
'FloatField': 'double precision',
'IntegerField': 'integer',
'BigIntegerField': 'bigint',
'IPAddressField': 'char(15)',
'GenericIPAddressField': 'char(39)',
'NullBooleanField': 'bool',
'OneToOneField': 'integer',
'PositiveIntegerField': 'integer UNSIGNED',
'PositiveSmallIntegerField': 'smallint UNSIGNED',
'SlugField': 'varchar(%(max_length)s)',
'SmallIntegerField': 'smallint',
'TextField': 'longtext',
'TimeField': 'time',
'UUIDField': 'char(32)',
如果想打印orm转换过程中的sql,需要在settings中进行如下配置:(学了增加记录的语句在过来配置吧)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level':'DEBUG',
},
}
}
补充:
外部文件操作Django的models
#外部文件使用django的models,需要配置django环境
import os
if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "singletablehw.settings")
import django
django.setup()
from app01 import models
import datetime
obj_list = []
for i in range(1,10):
obj = models.Book(
title='葵花宝典第%s式'%i,
price=20 + i,
pub_date='198%s-11-11 00:00:00'%i,
# pub_date=datetime.datetime.now(),
publish= '清华出版社' if i < 5 else '北大出版社',
)
obj_list.append(obj)
models.Book.objects.bulk_create(obj_list)