这里,从源码的角度总结一下Spark RDD算子的用法。
/**
* Return a new RDD by applying a function to all elements of this RDD.
*/
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
源码中有一个 sc.clean()
函数,它的所用是去除闭包中不能序列话的外部引用变量。Scala支持闭包,闭包会把它对外的引用(闭包里面引用了闭包外面的对像)保存到自己内部,这个闭包就可以被单独使用了,而不用担心它脱离了当前的作用域;但是在spark这种分布式环境里,这种作法会带来问题,如果对外部的引用是不可serializable的,它就不能正确被发送到worker节点上去了;还有一些引用,可能根本没有用到,这些没有使用到的引用是不需要被发到worker上的; 实际上sc.clean函数调用的是ClosureCleaner.clean();ClosureCleaner.clean()通过递归遍历闭包里面的引用,检查不能serializable的, 去除unused的引用;
map函数是一个粗粒度的操作,对于一个RDD来说,会使用迭代器对分区进行遍历,然后针对一个分区使用你想要执行的操作f, 然后返回一个新的RDD。其实可以理解为rdd的每一个元素都会执行同样的操作。
scala> val array = Array(1,2,3,4,5,6)
array: Array[Int] = Array(1, 2, 3, 4, 5, 6)
scala> val rdd = sc.app
appName applicationAttemptId applicationId
scala> val rdd = sc.parallelize(array, 2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:26
scala> val mapRdd = rdd.map(x => x * 2)
mapRdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:25
scala> mapRdd.collect().foreach(println)
2
4
6
8
10
12
flatMap方法与map方法类似,但是允许一次map方法中输出多个对象,而不是map中的一个对象经过函数转换成另一个对象。
/**
* Return a new RDD by first applying a function to all elements of this
* RDD, and then flattening the results.
*/
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
}
scala> val a = sc.parallelize(1 to 10, 5)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
scala> a.flatMap(num => 1 to num).collect
res1: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
mapPartitions是map的另一个实现,map的输入函数应用与RDD的每个元素,但是mapPartitions的输入函数作用于每个分区,也就是每个分区的内容作为整体。
/**
* Return a new RDD by applying a function to each partition of this RDD.
*
* `preservesPartitioning` indicates whether the input function preserves the partitioner, which
* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
*/
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U] = withScope {
val cleanedF = sc.clean(f)
new MapPartitionsRDD(
this,
(context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
preservesPartitioning)
}
scala> def myfunc[T](iter: Iterator[T]):Iterator[(T,T)]={
| var res = List[(T,T)]()
| var pre = iter.next
| while(iter.hasNext){
| var cur = iter.next
| res .::= (pre, cur)
| pre = cur
| }
| res.iterator
| }
myfunc: [T](iter: Iterator[T])Iterator[(T, T)]
scala> val a = sc.parallelize(1 to 9,3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> a.mapPartitions
mapPartitions mapPartitionsWithIndex
scala> a.mapPartitions(myfunc).collect
res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))
mapPartitionWithIndex方法与mapPartitions方法类似,不同的是mapPartitionWithIndex会对原始分区的索引进行追踪,这样就可以知道分区所对应的元素,方法的参数为一个函数,函数的输入为整型索引和迭代器。
/**
* Return a new RDD by applying a function to each partition of this RDD, while tracking the index
* of the original partition.
*
* `preservesPartitioning` indicates whether the input function preserves the partitioner, which
* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
*/
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U] = withScope {
val cleanedF = sc.clean(f)
new MapPartitionsRDD(
this,
(context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter),
preservesPartitioning)
}
scala> val x = sc.parallelize(1 to 10, 3)
x: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
scala> def myFunc(index:Int, iter:Iterator[Int]):Iterator[String]={
| iter.toList.map(x => index + "," + x).iterator
| }
myFunc: (index: Int, iter: Iterator[Int])Iterator[String]
scala> x.mapPartitions
mapPartitions mapPartitionsWithIndex
scala> x.mapPartitionsWithIndex(myFunc).collect
res1: Array[String] = Array(0,1, 0,2, 0,3, 1,4, 1,5, 1,6, 2,7, 2,8, 2,9, 2,10)
foreach主要对每一个输入的数据对象执行循环操作,可以用来执行对RDD元素的输出操作。
/**
* Applies a function f to all elements of this RDD.
*/
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
scala> var x = sc.parallelize(List(1 to 9), 3)
x: org.apache.spark.rdd.RDD[scala.collection.immutable.Range.Inclusive] = ParallelCollectionRDD[5] at parallelize at <console>:24
scala> x.foreach(print)
Range(1, 2, 3, 4, 5, 6, 7, 8, 9)
foreachPartition方法和mapPartition的作用一样,通过迭代器参数对RDD中每一个分区的数据对象应用函数,区别在于使用的参数是否有返回值。
/**
* Applies a function f to each partition of this RDD.
*/
def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
}
scala> val b = sc.parallelize(List(1,2,3,4,5,6), 3)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
scala> b.foreachPartition(x => println(x.reduce((a,b) => a +b)))
7
3
11
glom的作用与collec类似,collect是将RDD直接转化为数组的形式,而glom则是将RDD分区数据组装到数组类型的RDD中,每一个返回的数组包含一个分区的所有元素,按分区转化为数组,有几个分区就返回几个数组类型的RDD。
/**
* Return an RDD created by coalescing all elements within each partition into an array.
*/
def glom(): RDD[Array[T]] = withScope {
new MapPartitionsRDD[Array[T], T](this, (context, pid, iter) => Iterator(iter.toArray))
}
下面的例子中,RDD a有三个分区,glom将a转化为由三个数组构成的RDD。
scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
scala> a.glom.collect
res5: Array[Array[Int]] = Array(Array(1, 2, 3), Array(4, 5, 6), Array(7, 8, 9))
scala> a.glom
res6: org.apache.spark.rdd.RDD[Array[Int]] = MapPartitionsRDD[4] at glom at <console>:26
union方法与++方法是等价的,将两个RDD去并集,取并集的过程中不会去重。
/**
* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def union(other: RDD[T]): RDD[T] = withScope {
sc.union(this, other)
}
/**
* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def ++(other: RDD[T]): RDD[T] = withScope {
this.union(other)
}
scala> val a = sc.parallelize(1 to 4,2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:24
scala> val b = sc.parallelize(2 to 5,1)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24
scala> a.un
union unpersist
scala> a.union(b).collect
res7: Array[Int] = Array(1, 2, 3, 4, 2, 3, 4, 5)
计算两个RDD中每个对象的笛卡尔积
/**
* Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
* elements (a, b) where a is in `this` and b is in `other`.
*/
def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope {
new CartesianRDD(sc, this, other)
}
cala> val a = sc.parallelize(1 to 4,2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:24
scala> val b = sc.parallelize(2 to 5,1)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24
scala> a.cartesian(b).collect
res8: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5), (4,2), (4,3), (4,4), (4,5))
groupBy方法有三个重载方法,功能是讲元素通过map函数生成Key-Value格式,然后使用groupByKey方法对Key-Value进行聚合。
/**
* Return an RDD of grouped items. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* @note This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
* or `PairRDDFunctions.reduceByKey` will provide much better performance.
*/
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
groupBy[K](f, defaultPartitioner(this))
}
/**
* Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* @note This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
* or `PairRDDFunctions.reduceByKey` will provide much better performance.
*/
def groupBy[K](
f: T => K,
numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope {
groupBy(f, new HashPartitioner(numPartitions))
}
/**
* Return an RDD of grouped items. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* @note This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
* or `PairRDDFunctions.reduceByKey` will provide much better performance.
*/
def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)
: RDD[(K, Iterable[T])] = withScope {
val cleanF = sc.clean(f)
this.map(t => (cleanF(t), t)).groupByKey(p)
}
scala> val a = sc.parallelize(1 to 9,2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:24
scala> a.groupBy(x => {if(x % 2 == 0) "even" else "odd"}).collect
res9: Array[(String, Iterable[Int])] = Array((even,CompactBuffer(2, 4, 6, 8)), (odd,CompactBuffer(1, 3, 5, 7, 9)))
scala> def myfunc(a: Int):Int={
| a % 2
| }
myfunc: (a: Int)Int
scala> a.groupBy(myfunc).collect
res10: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(2, 4, 6, 8)), (1,CompactBuffer(1, 3, 5, 7, 9)))
scala> a.groupBy(myfunc(_), 1).collect
res11: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(2, 4, 6, 8)), (1,CompactBuffer(1, 3, 5, 7, 9)))
filter方法对输入元素进行过滤,参数是一个返回值为boolean的函数,如果函数对元素的运算结果为true,则通过元素,否则就将该元素过滤,不进入结果集。
/**
* Return a new RDD containing only the elements that satisfy a predicate.
*/
def filter(f: T => Boolean): RDD[T] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[T, T](
this,
(context, pid, iter) => iter.filter(cleanF),
preservesPartitioning = true)
}
scala> val a = sc.parallelize(List("we", "are", "from", "China", "not", "from", "America"))
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[16] at parallelize at <console>:24
scala> val b = a.filter(x => x.length >= 4)
b: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[17] at filter at <console>:25
scala> b.collect.foreach(println)
from
China
from
America
distinct方法将RDD中重复的元素去掉,只留下唯一的RDD元素。
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
}
scala> val a = sc.parallelize(List("we", "are", "from", "China", "not", "from", "America"))
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[18] at parallelize at <console>:24
scala> val b = a.map(x => x.length)
b: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[19] at map at <console>:25
scala> val c = b.distinct
c: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[22] at distinct at <console>:25
scala> c.foreach(println)
5
4
2
3
7
subtract方法就是求集合A-B,即把集合A中包含集合B的元素都删除,返回剩下的元素。
/**
* Return an RDD with the elements from `this` that are not in `other`.
*
* Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
* RDD will be <= us.
*/
def subtract(other: RDD[T]): RDD[T] = withScope {
subtract(other, partitioner.getOrElse(new HashPartitioner(partitions.length)))
}
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: RDD[T], numPartitions: Int): RDD[T] = withScope {
subtract(other, new HashPartitioner(numPartitions))
}
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(
other: RDD[T],
p: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
if (partitioner == Some(p)) {
// Our partitioner knows how to handle T (which, since we have a partitioner, is
// really (K, V)) so make a new Partitioner that will de-tuple our fake tuples
val p2 = new Partitioner() {
override def numPartitions: Int = p.numPartitions
override def getPartition(k: Any): Int = p.getPartition(k.asInstanceOf[(Any, _)]._1)
}
// Unfortunately, since we're making a new p2, we'll get ShuffleDependencies
// anyway, and when calling .keys, will not have a partitioner set, even though
// the SubtractedRDD will, thanks to p2's de-tupled partitioning, already be
// partitioned by the right/real keys (e.g. p).
this.map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys
} else {
this.map(x => (x, null)).subtractByKey(other.map((_, null)), p).keys
}
}
scala> val a = sc.parallelize(1 to 9, 2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:24
scala> val b = sc.parallelize(2 to 5, 4)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:24
scala> val c = a.subtract(b)
c: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[28] at subtract at <console>:27
scala> c.collect
res14: Array[Int] = Array(6, 8, 1, 7, 9)
cache,缓存数据,把RDD缓存到内存中,以便下次计算式再次被调用。persist是把RDD根据不同的级别进行持久化,通过参数指定持久化级别,如果不带参数则为默认持久化级别,即只保存到内存中,与Cache等价。
sample方法的作用是随即对RDD中的元素进行采样,或得一个新的子RDD。根据参数制定是否放回采样,子集占总数的百分比和随机种子。
/**
* Return a sampled subset of this RDD.
*
* @param withReplacement can elements be sampled multiple times (replaced when sampled out)
* @param fraction expected size of the sample as a fraction of this RDD's size
* without replacement: probability that each element is chosen; fraction must be [0, 1]
* with replacement: expected number of times each element is chosen; fraction must be greater
* than or equal to 0
* @param seed seed for the random number generator
*
* @note This is NOT guaranteed to provide exactly the fraction of the count
* of the given [[RDD]].
*/
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T] = {
require(fraction >= 0,
s"Fraction must be nonnegative, but got ${fraction}")
withScope {
require(fraction >= 0.0, "Negative fraction value: " + fraction)
if (withReplacement) {
new PartitionwiseSampledRDD[T, T](this, new PoissonSampler[T](fraction), true, seed)
} else {
new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](fraction), true, seed)
}
}
}
scala> val a = sc.parallelize(1 to 100, 2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:24
scala> val b = a.sample(false, 0.2, 0)
b: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[32] at sample at <console>:25
scala> b.foreach(println)
5
19
20
26
27
29
30
57
40
61
45
68
73
50
75
79
81
85
89
99
类似于groupBy,将每一个相同的Key的Value聚集起来形成序列,可以使用默认的分区器和自定义的分区器。
/**
* Group the values for each key in the RDD into a single sequence. Allows controlling the
* partitioning of the resulting key-value pair RDD by passing a Partitioner.
* The ordering of elements within each group is not guaranteed, and may even differ
* each time the resulting RDD is evaluated.
*
* @note This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
* or `PairRDDFunctions.reduceByKey` will provide much better performance.
*
* @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
* key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
*/
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
// groupByKey shouldn't use map side combine because map side combine does not
// reduce the amount of data shuffled and requires all map side data be inserted
// into a hash table, leading to more objects in the old gen.
val createCombiner = (v: V) => CompactBuffer(v)
val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
bufs.asInstanceOf[RDD[(K, Iterable[V])]]
}
/**
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with into `numPartitions` partitions. The ordering of elements within
* each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.
*
* @note This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
* or `PairRDDFunctions.reduceByKey` will provide much better performance.
*
* @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
* key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
*/
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = self.withScope {
groupByKey(new HashPartitioner(numPartitions))
}
scala> val a = sc.parallelize(List("mk", "zq", "xwc", "fig", "dcp", "snn"), 2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[33] at parallelize at <console>:24
scala> val b = a.keyBy(x => x.length)
b: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[34] at keyBy at <console>:25
scala> b.groupByKey.collect
res17: Array[(Int, Iterable[String])] = Array((2,CompactBuffer(mk, zq)), (3,CompactBuffer(xwc, fig, dcp, snn)))
comineByKey方法能够有效地讲键值对形式的RDD相同的Key的Value合并成序列形式,用户能自定义RDD的分区器和是否在Map端进行聚合操作。
/**
* Generic function to combine the elements for each key using a custom set of aggregation
* functions. This method is here for backward compatibility. It does not provide combiner
* classtag information to the shuffle.
*
* @see `combineByKeyWithClassTag`
*/
def combineByKey[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true,
serializer: Serializer = null): RDD[(K, C)] = self.withScope {
combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners,
partitioner, mapSideCombine, serializer)(null)
}
/**
* Simplified version of combineByKeyWithClassTag that hash-partitions the output RDD.
* This method is here for backward compatibility. It does not provide combiner
* classtag information to the shuffle.
*
* @see `combineByKeyWithClassTag`
*/
def combineByKey[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
numPartitions: Int): RDD[(K, C)] = self.withScope {
combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners, numPartitions)(null)
}
scala> val a = sc.parallelize(List("xwc", "fig","wc", "dcp", "zq", "znn", "mk", "zl", "hk", "lp"), 2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[36] at parallelize at <console>:24
scala> val b = sc.parallelize(List(1,2,2,3,2,1,2,2,2,3),2)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[37] at parallelize at <console>:24
scala> val c = b.zip(a)
c: org.apache.spark.rdd.RDD[(Int, String)] = ZippedPartitionsRDD2[38] at zip at <console>:27
scala> val d = c.combineByKey(List(_), (x:List[String], y:String)=>y::x, (x:List[String], y:List[String])=>x::: y)
d: org.apache.spark.rdd.RDD[(Int, List[String])] = ShuffledRDD[39] at combineByKey at <console>:25
scala> d.collect
res18: Array[(Int, List[String])] = Array((2,List(zq, wc, fig, hk, zl, mk)), (1,List(xwc, znn)), (3,List(dcp, lp)))
上面的例子使用三个参数重载的方法,该方法的第一个参数createCombiner把元素V转换成另一类元素C,该例子中使用的参数是List(_),表示将输入元素放在List集合中;第二个参数mergeValue的含义是吧元素V合并到元素C中,该例子中使用的是(x:List[String],y:String)=>y::x,表示将y字符合并到x链表集合中;第三个参数的含义是讲两个C元素合并,该例子中使用的是(x:List[String], y:List[String])=>x:::y, 表示把x链表集合中的内容合并到y链表中。
使用一个reduce函数来实现对想要的Key的value的聚合操作,发送给reduce前会在map端本地merge操作,该方法的底层实现是调用combineByKey方法的一个重载方法。
/**
* Merge the values for each key using an associative and commutative reduce function. This will
* also perform the merging locally on each mapper before sending results to a reducer, similarly
* to a "combiner" in MapReduce.
*/
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
}
/**
* Merge the values for each key using an associative and commutative reduce function. This will
* also perform the merging locally on each mapper before sending results to a reducer, similarly
* to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.
*/
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = self.withScope {
reduceByKey(new HashPartitioner(numPartitions), func)
}
/**
* Merge the values for each key using an associative and commutative reduce function. This will
* also perform the merging locally on each mapper before sending results to a reducer, similarly
* to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
* parallelism level.
*/
def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
reduceByKey(defaultPartitioner(self), func)
}
scala> val a = sc.parallelize(List("dcp","fjg","snn","wc", "za"), 2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> val b = a.map(x => (x.length,x))
b: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[2] at map at <console>:25
scala> b.reduceByKey((a, b) => a + b ).collect
res1: Array[(Int, String)] = Array((2,wcza), (3,dcpfjgsnn))
根据Key值对键值对进行排序,如果是字符,则按照字典顺序排序,如果是数组则按照数字大小排序,可通过参数指定升序还是降序。
scala> val a = sc.parallelize(List("dcp","fjg","snn","wc", "za"), 2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[4] at parallelize at <console>:24
scala> val b = sc.parallelize(1 to a.count.toInt,2)
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:26
scala> val c = a.zip(b)
c: org.apache.spark.rdd.RDD[(String, Int)] = ZippedPartitionsRDD2[6] at zip at <console>:27
scala> c.sortByKey(true).collect
res2: Array[(String, Int)] = Array((dcp,1), (fjg,2), (snn,3), (wc,4), (za,5))
scala> val a = sc.parallelize(List(1,2,2,3,1,3),2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at :24
scala> val b = a.map(x => (x, "b"))
b: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[11] at map at :25
scala> val c = a.map(x => (x, "c"))
c: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[12] at map at :25
scala> b.cogroup(c).collect
res3: Array[(Int, (Iterable[String], Iterable[String]))] = Array((2,(CompactBuffer(b, b),CompactBuffer(c, c))), (1,(CompactBuffer(b, b),CompactBuffer(c, c))), (3,(CompactBuffer(b, b),CompactBuffer(c, c))))
scala> val a = sc.parallelize(List(1,2,2,2,1,3),1)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[15] at parallelize at :24
scala> val b = a.map(x => (x, "b"))
b: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[16] at map at :25
scala> val c = a.map(x => (x, "c"))
c: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[17] at map at :25
scala> b.cogroup(c).collect
res4: Array[(Int, (Iterable[String], Iterable[String]))] = Array((1,(CompactBuffer(b, b),CompactBuffer(c, c))), (3,(CompactBuffer(b),CompactBuffer(c))), (2,(CompactBuffer(b, b, b),CompactBuffer(c, c, c))))
首先对RDD进行cogroup操作,然后对每个新的RDD下Key的值进行笛卡尔积操作,再返回结果使用flatmapValue方法。
scala> val a= sc.parallelize(List("fjg","wc","xwc"),2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[20] at parallelize at :24
scala> val c = sc.parallelize(List("fig", "wc", "sbb", "zq","xwc","dcp"), 2)
c: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[22] at parallelize at :24
scala> val d = c.keyBy(_.length)
d: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[23] at keyBy at :25
scala> val b = a.keyBy(_.length)
b: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[24] at keyBy at :25
scala> b.join(d).collect
res6: Array[(Int, (String, String))] = Array((2,(wc,wc)), (2,(wc,zq)), (3,(fjg,fig)), (3,(fjg,sbb)), (3,(fjg,xwc)), (3,(fjg,dcp)), (3,(xwc,fig)), (3,(xwc,sbb)), (3,(xwc,xwc)), (3,(xwc,dcp)))
把RDD中的元素以数组的形式返回。
/**
* Return an array that contains all of the elements in this RDD.
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
}
scala> val a = sc.parallelize(List("a", "b", "c"),2)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[28] at parallelize at <console>:24
scala> a.collect
res7: Array[String] = Array(a, b, c)
使用一个带两个参数的函数把元素进行聚集,返回一个元素的结果。该函数中的二元操作应该满足交换律和结合律,这样才能在并行计算中得到正确的计算结果。
/**
* Reduces the elements of this RDD using the specified commutative and
* associative binary operator.
*/
def reduce(f: (T, T) => T): T = withScope {
val cleanF = sc.clean(f)
val reducePartition: Iterator[T] => Option[T] = iter => {
if (iter.hasNext) {
Some(iter.reduceLeft(cleanF))
} else {
None
}
}
var jobResult: Option[T] = None
val mergeResult = (index: Int, taskResult: Option[T]) => {
if (taskResult.isDefined) {
jobResult = jobResult match {
case Some(value) => Some(f(value, taskResult.get))
case None => taskResult
}
}
}
sc.runJob(this, reducePartition, mergeResult)
// Get the final result out of our Option, or throw an exception if the RDD was empty
jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
scala> val a = sc.parallelize(1 to 10, 2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[29] at parallelize at <console>:24
scala> a.reduce((a, b) => a + b)
res8: Int = 55
take方法会从RDD中取出前n个元素。先扫描一个分区,之后从分区中得到结果,然后评估该分区的元素是否满足n,若果不满足则继续从其他分区中扫描获取。
/**
* Take the first num elements of the RDD. It works by first scanning one partition, and use the
* results from that partition to estimate the number of additional partitions needed to satisfy
* the limit.
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*
* @note Due to complications in the internal implementation, this method will raise
* an exception if called on an RDD of `Nothing` or `Null`.
*/
def take(num: Int): Array[T] = withScope {
val scaleUpFactor = Math.max(conf.getInt("spark.rdd.limit.scaleUpFactor", 4), 2)
if (num == 0) {
new Array[T](0)
} else {
val buf = new ArrayBuffer[T]
val totalParts = this.partitions.length
var partsScanned = 0
while (buf.size < num && partsScanned < totalParts) {
// The number of partitions to try in this iteration. It is ok for this number to be
// greater than totalParts because we actually cap it at totalParts in runJob.
var numPartsToTry = 1L
val left = num - buf.size
if (partsScanned > 0) {
// If we didn't find any rows after the previous iteration, quadruple and retry.
// Otherwise, interpolate the number of partitions we need to try, but overestimate
// it by 50%. We also cap the estimation in the end.
if (buf.isEmpty) {
numPartsToTry = partsScanned * scaleUpFactor
} else {
// As left > 0, numPartsToTry is always >= 1
numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
}
}
val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)
res.foreach(buf ++= _.take(num - buf.size))
partsScanned += p.size
}
buf.toArray
}
}
scala> val a = sc.parallelize(1 to 10, 2)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[30] at parallelize at <console>:24
scala> a.take(5)
res9: Array[Int] = Array(1, 2, 3, 4, 5)
top会采用隐式排序转换来获取最大的前n个元素。
/**
* Returns the top k (largest) elements from this RDD as defined by the specified
* implicit Ordering[T] and maintains the ordering. This does the opposite of
* [[takeOrdered]]. For example:
* {{{
* sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)
* // returns Array(12)
*
* sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)
* // returns Array(6, 5)
* }}}
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*
* @param num k, the number of top elements to return
* @param ord the implicit ordering for T
* @return an array of top elements
*/
def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
takeOrdered(num)(ord.reverse)
}
/**
* Returns the first k (smallest) elements from this RDD as defined by the specified
* implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
* For example:
* {{{
* sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
* // returns Array(2)
*
* sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
* // returns Array(2, 3)
* }}}
*
* @note This method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*
* @param num k, the number of elements to return
* @param ord the implicit ordering for T
* @return an array of top elements
*/
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
if (num == 0) {
Array.empty
} else {
val mapRDDs = mapPartitions { items =>
// Priority keeps the largest elements, so let's reverse the ordering.
val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
queue ++= collectionUtils.takeOrdered(items, num)(ord)
Iterator.single(queue)
}
if (mapRDDs.partitions.length == 0) {
Array.empty
} else {
mapRDDs.reduce { (queue1, queue2) =>
queue1 ++= queue2
queue1
}.toArray.sorted(ord)
}
}
}
scala> val c = sc.parallelize(Array(1,2,3,5,3,8,7,97,32),2)
c: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:24
scala> c.top(3)
res10: Array[Int] = Array(97, 32, 8)
count方法计算返回RDD中元素的个数。
/**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
scala> val c = sc.parallelize(Array(1,2,3,5,3,8,7,97,32),2)
c: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[33] at parallelize at <console>:24
scala> c.count
res11: Long = 9
返回一个固定大小的数组形式的采样子集,此外还会把返回元素的顺序随机打乱。
/**
* Return a fixed-size sampled subset of this RDD in an array
*
* @param withReplacement whether sampling is done with replacement
* @param num size of the returned sample
* @param seed seed for the random number generator
* @return sample of specified size in an array
*
* @note this method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def takeSample(
withReplacement: Boolean,
num: Int,
seed: Long = Utils.random.nextLong): Array[T] = withScope {
val numStDev = 10.0
require(num >= 0, "Negative number of elements requested")
require(num <= (Int.MaxValue - (numStDev * math.sqrt(Int.MaxValue)).toInt),
"Cannot support a sample size > Int.MaxValue - " +
s"$numStDev * math.sqrt(Int.MaxValue)")
if (num == 0) {
new Array[T](0)
} else {
val initialCount = this.count()
if (initialCount == 0) {
new Array[T](0)
} else {
val rand = new Random(seed)
if (!withReplacement && num >= initialCount) {
Utils.randomizeInPlace(this.collect(), rand)
} else {
val fraction = SamplingUtils.computeFractionForSampleSize(num, initialCount,
withReplacement)
var samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
// If the first sample didn't turn out large enough, keep trying to take samples;
// this shouldn't happen often because we use a big multiplier for the initial size
var numIters = 0
while (samples.length < num) {
logWarning(s"Needed to re-sample due to insufficient sample size. Repeat #$numIters")
samples = this.sample(withReplacement, fraction, rand.nextInt()).collect()
numIters += 1
}
Utils.randomizeInPlace(samples, rand).take(num)
}
}
}
}
scala> val c = sc.parallelize(Array(1,2,3,5,3,8,7,97,32),2)
c: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[34] at parallelize at <console>:24
scala> c.takeSample(true,3, 1)
res14: Array[Int] = Array(1, 3, 7)
将RDD存储为文本文件,一次存一行
类似count,但是countByKey会根据Key计算对应的Value个数,返回Map类型的结果。
/**
* Count the number of elements for each key, collecting the results to a local Map.
*
* @note This method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByKey(): Map[K, Long] = self.withScope {
self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
}
scala> val c = sc.parallelize(List("fig", "wc", "sbb", "zq","xwc","dcp"), 2)
c: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[36] at parallelize at <console>:24
scala> val d = c.keyBy(_.length)
d: org.apache.spark.rdd.RDD[(Int, String)] = MapPartitionsRDD[37] at keyBy at <console>:25
scala> d.countByKey
res15: scala.collection.Map[Int,Long] = Map(2 -> 2, 3 -> 4)
/**
* Aggregate the elements of each partition, and then the results for all the partitions, using
* given combine functions and a neutral "zero value". This function can return a different result
* type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U
* and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are
* allowed to modify and return their first argument instead of creating a new U to avoid memory
* allocation.
*
* @param zeroValue the initial value for the accumulated result of each partition for the
* `seqOp` operator, and also the initial value for the combine results from
* different partitions for the `combOp` operator - this will typically be the
* neutral element (e.g. `Nil` for list concatenation or `0` for summation)
* @param seqOp an operator used to accumulate results within a partition
* @param combOp an associative operator used to combine results from different partitions
*/
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
// Clone the zero value since we will also be serializing it as part of tasks
var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
val cleanSeqOp = sc.clean(seqOp)
val cleanCombOp = sc.clean(combOp)
val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
sc.runJob(this, aggregatePartition, mergeResult)
jobResult
}
/**
* Aggregate the elements of each partition, and then the results for all the partitions, using a
* given associative function and a neutral "zero value". The function
* op(t1, t2) is allowed to modify t1 and return it as its result value to avoid object
* allocation; however, it should not modify t2.
*
* This behaves somewhat differently from fold operations implemented for non-distributed
* collections in functional languages like Scala. This fold operation may be applied to
* partitions individually, and then fold those results into the final result, rather than
* apply the fold to each element sequentially in some defined ordering. For functions
* that are not commutative, the result may differ from that of a fold applied to a
* non-distributed collection.
*
* @param zeroValue the initial value for the accumulated result of each partition for the `op`
* operator, and also the initial value for the combine results from different
* partitions for the `op` operator - this will typically be the neutral
* element (e.g. `Nil` for list concatenation or `0` for summation)
* @param op an operator used to both accumulate results within a partition and combine results
* from different partitions
*/
def fold(zeroValue: T)(op: (T, T) => T): T = withScope {
// Clone the zero value since we will also be serializing it as part of tasks
var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())
val cleanOp = sc.clean(op)
val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)
val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult)
sc.runJob(this, foldPartition, mergeResult)
jobResult
}