希尔伯特(Hilbert)空间和巴拿赫(Banach)空间

希尔伯特(Hilbert)空间和巴拿赫(Banach)空间

(2012-03-29 11:42:53) 希尔伯特空间

在数学领域,希尔伯特空间是欧几里德空间的一个推广,其不再局限于有限维的情形。与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公式化数学和量子力学的关键性概念之一。

希尔伯特,D.(Hilbert,David,1862~1943)德国数学家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于1930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格-莱福勒奖,1942年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢于公开发表文章悼念"敌人的数学家"达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。

最早产生

  希尔伯特空间以 大卫·希尔伯特 的名字命名,他在对积分方程的研究中研究了希尔伯特空间。冯·诺伊曼在其1929年出版的关于无界厄米算子的著作中,最早使用了“希尔伯特空间”这个名词。冯·诺伊曼可能是最早清楚地认识到希尔伯特空间的重要性的数学家之一,他在进行对量子力学的基础性和创造性地研究的时候认识到了这一点。此项研究由冯·诺伊曼与希尔伯特和朗道展开,随后由尤金·维格纳(Template:Lang)继续深入。“希尔伯特空间”这个名字迅速被其他科学家所接受,例如在外尔1931年出版的著作《群与量子力学的理论》(Template:Lang)中就使用这一名词。

应用

  一个抽象的希尔伯特空间中的元素往往被称为向量。在实际应用中,它可能代表了一列 复数 或是一个函数。例如在量子力学中,一个物理系统可以被一个复希尔伯特空间所表示,其中的向量是描述系统可能状态的波函数。详细的资料可以参考量子力学的数学描述相关的内容。量子力学中由平面波和束缚态所构成的希尔伯特空间,一般被称为装备希尔伯特空间(riggedHilbert space)。

定义

  在一个复向量空间H上的给定的内积< .,. > 可以按照如下的方式导出一个范数(norm)  此空间称为是一个希尔伯特空间,如果其对于这个范数来说是完备的。这里的 完备性 是指,任何一个柯西列都收敛到此空间中的某个元素,即它们与某个元素的范数差的极限为0。任何一个希尔伯特空间都是 巴拿赫空间 ,但是反之未必。  任何有限维内积空间(如欧几里德空间及其上的点积)都是希尔伯特空间。但从实际应用角度来看,无穷维的希尔伯特空间更有价值,例如  *酉群(unitarygroup)的表示论。  *平方可积的随机过程理论。  *偏微分方程的希尔伯特空间理论,特别是狄利克雷问题。  *函数的谱分析及小波理论。  *量子力学的数学描述。  内积可以帮助人们从“几何的”观点来研究希尔伯特空间,并使用有限维空间中的几何语言来描述希尔伯特空间。在所有的无穷维拓扑向量空间中,希尔伯特空间性质最好,也最接近有限维空间的情形。  傅立叶分析的一个重要目的是将一个给定的函数表示成一族给定的基函数的和(可能是无穷和)。这个问题可以在希尔伯特空间中更抽象地描述为:任何一个希尔伯特空间都有一族标准正交基,而且每个希尔伯特空间中的元素都可以唯一地表示为这族基中的元素或其倍数的和。
 
 
 
 

巴拿赫空间

百科名片

巴拿赫空间理论(Banachspace)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

简介

   巴拿赫 空间理论(Banachspace)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常 用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

线性空间

  巴拿赫空间(Banachspace)是一种赋有“长度”的线性空间﹐ 泛函分析 研究的基本对象之一。数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。从魏尔斯特拉斯﹐K.(T.W.)以来﹐人们久已十分关心闭区间[a﹐b]上的连续函数以及它们的一致收敛性。甚至在19世纪末﹐G.阿斯科利就得到[a﹐b]上一族连续函数之列紧性的判断准则﹐后来十分成功地用于常微分方程和复变函数论中。 1909年里斯﹐F.(F.)给出[0﹐1]上连续线性泛函的表达式﹐这是分析学历史上的重大事件。还有一个极重要的空间﹐那就是由所有在[0﹐1]上次可勒贝格求和的函数构成的空间(1<p<∞)。在1910~1917年﹐人们研究它的种种初等性质﹔其上连续线性泛函的表示﹐则照亮了通往对偶理论的道路。人们还把弗雷德霍姆积分方程理论推广到这种空间﹐并且引进全连 续算子的概念。当然还该想到 希尔伯特空间 。正是基于这些具体的﹑生动的素材﹐巴拿赫﹐S.与维纳﹐N.相互独立地在1922年提出当今所谓巴拿赫空间的概念﹐并且在不到10年的时间内便发展成一部本身相当完美而又有着多方面应用的理论。

 

Banach空间

  完备的线性赋范空间称为巴拿赫空间。是用波兰数学家巴拿赫(StefanBanach )的名字命名的。   巴拿赫的主要贡献是引进了线性赋范空间概念,建立了其上的线性算子理论,证明了作为泛函分析基础的三个定理,哈恩--巴拿赫延拓定理,巴拿赫--斯坦豪斯定理即共鸣之定理、闭图像定理。这些定理概括了许多经典的分析结果,在理论上和应用上都有重要价值。

无穷空间

  巴拿赫空间是一种赋有长度的线性空间,大多数都是无穷空间,可看成通常向量空间的无穷维推广。同时也是泛函分析研究的基本对象之一。 里斯。F在1909年就给出了『0,1』上连续线性泛函的表达式。所以,连续线性泛函的表示是巴拿赫空间的一种初等性质。

 

 

正文

  一种赋有“长度”的线性空间,泛函分析研究的基本对象之一。数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。从K.(T.W.)魏尔斯特拉斯以来,人们久已十分关心闭区间【α,b】上的连续函数以及它们的一致收敛性。甚至在19世纪末,G.阿斯科利就得到【α,b】上一族连续 函数之列紧性的判断准则,后来十分成功地用于常微分方程和复变函数论中。1909年F.(F.)里斯给出C【0,1】上连续线性泛函的表达式,这是分析学历史上的重大事件。还有一个极重要的空间,那就是由所有在【0,1】上p次可勒贝格求和的函数构成的Lp空间(1<p<∞)。在1910~1917年,人们研究它的种种初等性质;其上连续线性泛函的表示,则照亮了通往对偶理论的道路。人们还把弗雷德霍姆积分方程理论推广到这种空间,并且引进全连续算子的概念。当然还该想到希尔伯特空间。正是基于这些具体的、生动的素材,S.巴拿赫与N.维纳相互独立地在1922年提出当今所谓巴拿赫空间的概念,并且在不到10年的时间内便发展成一部本身相当完美而又有着多方面应用的理论。  定义对于实(或复)数域K

定义

  空间X,若有从X到R的函数‖x‖使得:①‖x‖≥0,‖x‖=0必须且只须x=0,②对α∈K,有‖αx‖=α‖x‖,③‖x+y‖≤‖x‖+‖y‖,则称X为线性赋范空间,而称‖x‖为范数。显然,范数这概念是Rn中向量长度概念的推广。如同有理数系可完备化为实数系,任何线性赋范空间也可按照距离d(x,y)=‖x-y‖作为度量空间而完备化。完备的赋范线性空间称为巴拿赫空间。例如,设Ω为紧豪斯多夫空间,令C(Ω)表示Ω上一切实(或复)值连续函数的全体,则C(Ω)关于范数成为一个巴拿赫空间。再如,设(Ω,μ)是正测度空间,令Lp(Ω,μ)表示 Ω上一切p(p≥1)次可求和函数的全体,则Lp(Ω,μ)关于范数成为一个巴拿赫空间。特别取Ω={1,2,3,…},μ(n)=1(当n=1、2、3、…)则相应的Lp(Ω,μ)成为满足条件的数列的全体,而相应的范数为。一般记这个特殊的Lp(Ω,μ)为lp。还如,设(Ω,β,μ)是正测度空间,对Ω上可测的函数ƒ(t),如果有正数α,使于Ω几乎处处有│ƒ|(t)|≤α,则称ƒ(t)为本性有界的函数,而记上述诸α之下确界为。令L∞(Ω)表示Ω上之本性有界函数的全体,则L∞(Ω)关于范数成为一个巴拿赫空间。特别对Ω={1,2,3,…}而μ(n)=1(n=1,2,3,…)则相应的L∞(Ω)即有界数列的全体,而相应的范数为。一般记这个特殊的L∞(Ω)为m。若,则称强收敛于x,简写作。基作为完全就范直交函数系的推广,设是巴拿赫空间X中的序列,如果对 每个x ∈X都恰有一数列,使,则称为X的基,而称X为有基的空间。凡有基的空间一定是可分的,对于许多可分空间,人们具体地构造出它们的基。但是,是否每个可分的巴拿赫空间都有基的问题,直到1973年才由P.恩夫洛举出反例。确有可分而没有基的巴拿赫空间。对偶空间设ƒ(x)是从实(

 对偶空间

  ƒ上赋范线性空间X 到ƒ上的线性函数。若ƒ(x)还是连续的,则称ƒ(x)为连续线性泛函。一切如此的ƒ(x)按范数构成的巴拿赫空间,便称为X的对偶空间(或共轭空间)并记作X*(或X┡)。在许多数学分支中都会遇到对偶空间,例如矩量问题、偏微分方程理论等。一些物理系统的状态也常与适当空间上的线性泛函联系在一起。至于泛函分析本身,对偶空间也是极为重要的概念。通过X*,能更好地理解X。

里斯表现定理

  里斯表现定理设Ω是紧豪斯多夫的C(Ω)上的连续线性泛函ƒ(x),便恰有Ω上的一个复正则波莱尔测度μ使(1)并且‖ƒ‖=μ在Ω上的全变差|μ|。许多人把这结果称作里斯表现定理。它是发展近代算子谱论的重要工具,还有着其他多方面的应 用。这定理也可推广至局部紧豪斯多夫空间。许多测度来源于此定理。设Ω上所有复的正则波莱尔测度为m(Ω),对每个μ∈m(Ω),由(1)式定义的ƒ(x)是C(Ω)上的连续线性泛函,定义‖μ‖=全变差|μ|,则C(Ω)*保范同构于m(Ω)。例如,于正测度μ,有Lp(Ω,μ)(1 分析发展的要求,也因为巴拿赫空间理论本身的需要,于是人们研究X与X*之间的关系,这便是对偶理论。这理论的主要工具是哈恩-巴拿赫扩张定理:设M是线性赋范空间X的闭线性子空间,则①对M上的连续线性泛函g(x),恒有ƒ(x)∈X*使ƒ(x)=g(x),当x∈M,又‖ƒ‖=‖g‖();②对X中任给的x0≠0,恒有ƒ(x)∈X* 使ƒ(x0)=‖x0‖,‖ƒ‖=1,③对任意,恒有ƒ(x)∈X*当x∈M使得ƒ(x)=0,ƒ(x0)=1,并且‖ƒ‖=1/d,这里。设ƒ(x)∈X*,一般称点集H={x∈X;ƒ(x)=常数C}为X中的闭超平面。设M是X的子空间,x0∈X,则称点集x0+M为X中的线性簇。这样,哈恩-巴拿赫定理便有如下的几何解释:若X中的线性簇m与非空的开凸集K不相交,则有闭超平面H使而。自反空间对巴拿赫空间X有对

自反空间

  *,而X*的对偶空间则记作X**,任给x0∈X,通过(当x*∈X*)便确定一个,并且。这表明存在映射τ把X保范地嵌入到X**中。一般X**。如果τ(X)=X**,则称X为自反空间。典型的自反空间是Lp【0,1】(1 【0,1】与C【0,1】都不自反。弱收敛无穷维巴拿赫空间的单位球是不可能按范数拓扑为紧的,因此许多有限维空间的命题都不能推广到一般巴拿赫空间。针对这一点,人们引进弱收敛的概念。对X中 与 x0,若于任何 x*∈X *都有,则称弱收敛于x0,记作。 埃伯莱因-什穆利扬定理 巴拿赫空间X是自反的;必须且只须X中任何按范数有界的点列都含有弱收敛的子序列。利用自反空间的这个拓扑性质,便能证明如下的结果:设J(x)是自反空间X之有界凸闭集C上弱下半连续的有界泛函,则J(x)在C上达到最小值。应该指出,正是为着使得一些重要的命题得以成立,人们才引进种种类型的巴拿赫空间,自反空间就是一个鲜 明的例子。再如与上述极值问题的惟一性有关,有所谓球状空间;与拉东-尼科迪姆定理相关,则有一致凸空间等等。人们曾经长久地停留在序列弱收敛上。其实即使对于l2上的弱拓扑,只用序列弱收敛也是不行的。J.冯·诺伊曼首先看到这一点,并且在1930年就使用弱邻域概念。X上使得一切x*∈X* 都连续的最弱的拓扑称为X上的弱拓扑。全体,其中,ε>0,n=1,2,…构成X在O点的一个弱邻域基。 X*上使得一切,x∈X都连续的最弱的拓扑称为X*上的弱*拓扑。全体,其中,ε>0,n=1,2,…构成X*在O点的一个弱*邻域基。线性算子设T是从实(或复)域

 线性算子

  性空间X中线性流形M到F上的线性空间Y的映射,如果则称T是线性算子,M为T的定义域,记作D(T)。特别当M=X而Y为数域F 时,T 便称为X上的线性泛函。设X、Y都是赋范线性空间,x0∈D(T),若对D(T)中任何收敛于x0的序列都有Tx n→Tx0,则称T在x0处连续。设D(T)=X, 则线性算子T 在X 上每点都连续必须且只须T是有界的,即。这时还称为T的范数,记作‖T‖。设X与Y都是数域F上的线性空间,A与B都是从X到Y的线性算子,对A与B可定义如下的运算:(A+B)x=Ax+Bx,(αA)x=α(Ax),当x∈X,α∈F又定义(AB)x=A(Bx),x∈X,当A与B都是从X到X的线性算子时。若线性算子T是单射的,则将它的逆映射记作T-1,而Ix=x则称为单位算子或恒等算子。设H为度量空间,,对x0 ∈E,若有小球,则称x0在E的内部。若点集S的闭包埅之内部是空的,则称S在H中无处稠密。若度量空间H中的点集,而每个Sn皆在H中无处稠密,则称E为H中第一纲的点集。H中非第一纲的点集叫做第二纲的。显然全体有理数在实轴上便是第一纲的。可以这样想:第一纲的点集是比较稀疏的。贝尔纲定理完备的度量空间必定是第二纲的。这是区间套定理的发展和提高,在证明许多存在定理时是很有用处的。在勒贝格关于奇异积分与O.特普利茨关于正则求和法以及哈恩关于插值理论等方面的研究之后,巴拿赫与H.斯坦豪斯在1927年给出共鸣定理。共鸣 定理又称一致有界原理。设X是巴拿赫空间,Y是线性赋范空间,是一族从X到Y的有界线性算子。如果当x∈X,则。这是有着多方面应用的重要定理,是纲定理的直接推论。和纲推理密切相关,还有极著名的开映射定理。开映射定理设X与Y都是巴拿赫空间,若T是从X到Y的有界线性算子,且TX=Y,则T变X的开集为Y中的开集。这在有限维空间是平凡的,但在无限维空间却是极为深刻有力的工具。它有下列重要推论。巴拿赫逆算子定理 设X与Y都是巴拿赫空间,若T是从X到Y的有界线性算子,且T是一对一的,又TX=Y,则T-1连续。开映射定理还有一个关于闭算子的重要推论。设y=Tx是线性的,若从恒有x0∈D(T)且,则称T为闭算子。闭算子在应用上是非常重要的概念。表面上,闭性与连续性很相似,其实差异不小,因为连续性是从较少的假设xn→x0到更多的结论且。一般称X×Y中之G(T)={;x∈D(T)}为T的图像。易见T是闭算子,则G(T)按范数‖‖=‖x‖+‖y‖是闭的点集。闭图像定理设X与Y都是巴拿赫空间,若T是从X到Y的线性算子,则T是有界的必须且只须G(T)是闭的。共轭算子设X与Y都是巴拿赫空间。若线性算子T的定义域D(T)在X中稠密,而T的值都在Y中,如果对有x*∈X*使当x∈D(T)时,y*(Tx)=x*(x)则x*由y*惟一确定,记作T┡y*=x*,一般称T┡为T的共轭算子或对偶算子。特别当T是从X到Y的有界线性算子时,则T┡也是有界的,且‖T┡‖=‖T‖。显然,共轭算子是转置矩阵的推广,所以它自然地在研究方程Tx=y时起着重要的作用。设A为巴拿赫空间X上的线性算子,称N(A)={x;Ax=0}为A的零空间,R(A)={y;y=Ax,x∈D(A)}为A的值域。从线性方程组的解,已经看到A与A┡之值域与零空间的密切关系,后来在弗雷德霍姆理论中又再次看到这点。对点集,所谓M在X*中的零化子即而于点集,则G在X中之零化子即。设A为巴拿赫空间上有界线性算子,则, ,, 。若又设X 自反,则。 闭值域定理设X与Y是巴拿赫空间,而T是从X到Y的闭线性算子,且,则下列命题等价: ①R(T)在Y中是闭的,②R(T┡)在X*中是闭的,③④。 参考书目 S.Banach,Théorie des OpérationsLinéaires, Monografje Mathematyczne, Warsaw, 1932. N.Dunford andJ.T.Schwartz,Linear Operators, Part 1.General Theory,Interscience,New York, 1958. A.E.Taylor and D.C.Lay,Introduction to functionalAnalysis, John Wiley & Sons, New York,1979.
 
 
线性距离空间构成赋范线性空间和内积空间的充要条件
郎开禄
楚雄师范学院数学系,云南楚雄675000 2010年第3期
本文给出线性距离空间构成赋范线性空间的一个充要条件和线性距离空间构成内积空间的三个充要条件。
 

Hilbert空间就是定义了内积的空间,其元素没有任何限制,只要在元素间定义了内积就行
有限维Hilbert空间的特例:通常的几何空间,多项式空间等等
向量空间指的是线性空间,也就是空间中的元素是满足线性关系的,线性空间的特点就是里面有一组基,可以用来表示整个空间。
可以证明,只要是定义了内积,那么元素间就满足了某种线性关系,因此Hilbert空间也可以定义为在线性空间中定义了内积的空间。因此Hilbert空间是一种特殊的线性空间.
希尔伯特空间(Hilbertspace)由大卫‧希尔伯特(David Hilbert)提出,是一个完备的内积空间。希尔伯特空间将傅立叶展开及诸如傅立叶转换之类的线性转换概念加以厘清并广义化。它是有限维欧几里得空间向无穷维的推广,也是巴拿赫空间(Banachspace)的特例。其并出现在泛函分析之研究范畴。
一个量子系统的状态ψ,可将其张开在一线性空间,量子力学就是在这个空间里开展活动的。集合{ψ}不仅是一个一般的线性空间,而且是一个满足平方可积条件并定义了内积、由复函数构成的线性空间。在数学上再符合一些严格定义,如此的线性空间即为希尔伯特空间。希尔伯特空间中的任何一维子空间(subspace)都视为矢量,内积采取的方式为矢量与另一矢量之共轭矢量进行各基底(basis)分量的点乘(dotproduct)
在数学领域,希尔伯特空间是欧几里德空间的一个推广,其不再局限于有限维的情形。与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公式化数学和量子力学的关键性概念之一。
向量空间
  (或称线性空间)是现代数学中的一个基本概念。是线性代数研究的基本对象。
 向量空间的一个直观模型是向量几何,几何上的向量及相关的运算即向量加法,标量乘法,以及对运算的一些限制如封闭性,结合律,已大致地描述了“向量空间”这个数学概念的直观形象。
 在现代数学中,“向量”的概念不仅限于此,符合下列公理的任何!!!!!!数学对象都可被当作向量处理。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。

banach空间和hilbert空间的区别与联系
   1)距离空间是一个可"比较"的空间.这里是点与点比较(这是从定性到定量的飞跃)
   2)Banach空间加入范数的距离空间,引进"范数",其好处在于回答,一个事,"大大不过多少,小小不过多少".是在函数比较中,告诉我们误差的度量.
   3)Heibert空间是加入内积的Banach空间,无限维变换,用"谱"去描述无限未知的东西.
 
 

什么是Banach空间
完备的线性赋范空间称为巴拿赫空间。是用波兰数学家巴拿赫(StefanBanach )的名字命名的。
巴拿赫的主要贡献是引进了线性赋范空间概念,建立了其上的线性算子理论,证明了作为泛函分析基础的三个定理,哈恩--巴拿赫延拓定理,巴拿赫--斯坦豪斯定理即共鸣之定理、闭图像定理。这些定理概括了许多经典的分析结果,在理论上和应用上都有重要价值。
   
   巴拿赫空间是一种赋有长度的线性空间,大多数都是无穷空间,可看成通常向量空间的无穷维推广。同时也是泛函分析研究的基本对象之一。里斯。F在1909年就给出了『0,1』上连续线性泛函的表达式。所以,连续线性泛函的表示是巴拿赫空间的一种初等性质。
 
赋范线性空间与Banach空间、度量空间、内积空间的,希尔伯特空间之间的关系
 
(1)赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里德空间 Rn的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:
零向量的长度是零,并且任意向量的长度是非负实数。
一个向量 v 乘以一个标量 a 时,长度应变为原向量 v 的 |a|( a 的绝对值)倍。
三角不等式成立。也就是说,对于两个向量 v 和 u ,它们的长度和(“三角形”的两边)大于 v+u (第三边)的长度。
一个把向量映射到非负实数的函数如果满足以上性质,就叫做一个半范数;如果只有零向量的函数值是零,那么叫做范数。拥有一个范数的向量空间叫做赋范向量空间
(2)Banach空间是完备的线性赋范向量空间
(3)在数学中,度量空间是一个集合,在其中可以定义在这个集合的元素之间的距离(叫做度量)的概念
(4)内积空间的定义:设V是数域P上的线性空间,V到P的一个代数运算(V×V->P),记为(ɑ,ß) 。如果(ɑ,ß)满足下列条件:
1) (ɑ,ß) = (ß,ɑ);
2) (ɑ+ß,γ) = (ɑ,γ) + (ß,γ);
3) (kɑ,ß) = k(ɑ,ß);
4) (ɑ,ɑ)≥0,当且仅当ɑ=0时(ɑ,ɑ)=0,
其中k是数域P中的任意数,ɑ、ß、γ是V中的任意元素,则称(ɑ,ß)为ɑ与ß的内积,定义了内积的线性空间V称为内积空间。特别地,称实数域R上的内积空间V为Euclid空间(欧式空间);称复数域C上的内积空间V为酉空间。
(5)希尔伯特空间:在一个复向量空间H上的给定的内积并导出一种范数,如果其对于这个范数来说是完备的,那么它就是希尔伯特空间。这里的完备性是指,任何一个柯西列都收敛到此空间中的某个元素,即它们与某个元素的范数差的极限为0。希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念),希尔伯特空间还是一个完备的空间。

你可能感兴趣的:(希尔伯特(Hilbert)空间和巴拿赫(Banach)空间)