nn.Module

#继承nn.Module撰写自己的全连接层
import torch as t
from torch import nn
from torch.autograd import Variable as V
class Linear(nn.Module):#继承nn.Module
    def __init__(self,in_features,out_features):
        super(Linear,self).__init__() #等价于nn.Module.__init__(self)
        self.w=nn.Parameter(t.randn(in_features,out_features))
        self.b=nn.Parameter(t.randn(out_features))
    def forward(self,x):
        x=x.mm(self.w)
        return x+self.b.expand_as(x)
layer=Linear(4,3)
input=V(t.randn(2,4))
output=layer(input)
print(output)
for name,parameter in layer.named_parameters():
    print(name,parameter)  #w和b
#利用nn.Module实现多层感知机
class Perceptron(nn.Module):
    def __init__(self, in_features, hidden_features,out_features):
        nn.Module.__init__(self)
        self.layer1=Linear(in_features,hidden_features)#Linear是前边自定义的全连接层
        self.layer2=Linear(in_features,hidden_features)
    def forward(self,x):
        x=self.layer1(x)
        x=t.sigmoid(x)
        return self.layer2(x)
perceptron=Perceptron(3,4,1)
for name,param in perceptron.named_parameters():
    print(name,param.size())

 

你可能感兴趣的:(python学习)