- 人工智能在fpga的具体应用_FPGA创意人工智能研发 校企合作培养专业人才
墨墨猪
人工智能在fpga的具体应用
FPGA英特尔®FPGA与人工智能技术培训——成都信息工程大学站人工智能在21世纪初迎来以深度学习与大数据云计算为主导的第三次浪潮,在无人驾驶、医疗保健、工业等多个领域得到广泛应用。随着人工智能理论和技术日益成熟,FPGA在人工智能方面的应用也越来越多,特别对于需要分析大量数据的AI、大数据以及机器学习等研究领域。人工智能与FPGA的灵活应用,对人工智能专业人才培养提出了更高要求。英特尔®FPGA
- 正则化技术和模型融合等方法提高模型的泛化能力
小赖同学啊
人工智能人工智能
在机器学习和深度学习中,提高模型的泛化能力至关重要,正则化技术和模型融合是两种有效的手段,以下将详细介绍它们的原理、常见方法及代码示例。正则化技术原理正则化是通过在损失函数中添加一个正则化项,来限制模型的复杂度,防止模型过拟合训练数据,从而提高模型在未见过数据上的泛化能力。正则化项通常与模型的参数相关,通过惩罚过大的参数值,使模型更加平滑和简单。常见方法L1正则化(Lasso正则化)原理:在损失函
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- R语言:探索数据的利器
ByteWhiz
r语言开发语言R语言
R语言:探索数据的利器R语言是一种强大而灵活的编程语言,尤其在数据科学和统计分析领域中广泛应用。作为一门开源语言,R语言拥有丰富的数据处理和可视化功能,同时支持大规模数据分析和机器学习。本文将介绍R语言的基本特性、常用的数据操作和可视化技巧,并提供相应的源代码示例。一、R语言的基本特性向量化操作:R语言鼓励使用向量化操作,即对整个向量或矩阵执行相同的操作,从而提高运算效率。例如,可以通过一条简单的
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- 零基础学习机器学习分类模型
可喜~可乐
机器学习机器学习学习分类人工智能数据挖掘
下面将带你通过一个简单的机器学习项目,使用Python实现一个常见的分类问题。我们将使用著名的Iris数据集,来构建一个机器学习模型,进行花卉品种的分类。整个过程会包含:原理介绍:机器学习的基本概念。数据加载和预处理:如何加载数据并进行必要的处理。模型训练和评估:使用经典的分类算法——逻辑回归。代码解释:逐步分析代码实现。拓展内容:如何优化和扩展该项目。1.原理介绍1.1机器学习基本概念机器学习(
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
写代码的中青年
3天入门机器学习seleniumbeautifulsoup爬虫pythonxpath正则表达式
专栏介绍1.专栏面向零基础或基础较差的机器学习入门的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。3.需要强调的是,专栏仅介绍主流、初阶知识,每一技术模块都是AI研究的细分领域,同更多技术有所交叠,此处不进行讨论和分享。数据采集技术:selenium/正则匹配/xpa
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- CSDN 博客文章:Genesis 安装指南与环境配置(Python 3.9+)
qq_27492797
python开发语言
引言随着人工智能和机器学习的蓬勃发展,各式各样的框架和工具如雨后春笋般涌现,为科研人员和开发者的创新之路提供强大支持。今天,我们聚焦于Genesis——一个在物理模拟、计算机图形学以及机器人领域展现出卓越潜力的先进平台。需要特别说明的是,目前Genesis项目中备受期待的对话式生成AI接口,当前仍处于概念展示阶段,仅存在于PPT之中,尚未对外开放,大家在关注其发展时需留意这一情况。本文将着重介绍如
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 机器学习数学通关指南——牛顿-莱布尼茨公式
Shockang
机器学习数学通关指南机器学习数学微积分
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一句话总结∫abf(x) dx=F(b)−F(a)\int_{a}^{b}f(x)\,dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)其中,F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数(即F′(
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 【matlab数学建模项目】matlab实现HSV空间的森林火灾监测系统——森林火灾监测系统
阿里matlab建模师
matlab精品科研项目数学建模matlab开发语言科研项目算法美赛全国大学生数学建模竞赛
MATLAB实现HSV空间森林火灾监测系统1、项目下载:本项目完整讲解和全套实现源码见下资源,有需要的朋友可以点击进行下载说明文档(点击下载)全套源码+学术论文基于MATLAB的HSV空间森林火灾监测系统的技术实现与应用-机器学习-HSV色彩空间-图像处理-森林火灾监测-matlab更多阿里matlab精品数学建模项目可点击下方文字链接直达查看:matlab精品数学建模项目合集(算法+源码+论文)
- 机器学习01
天行者@
机器学习人工智能深度学习
机器学习的基本过程如下:1.数据获取2.数据划分3.特征提取4.模型选择与训练5.模型评估6.模型调优一、特征工程(重点)0.特征工程步骤为:特征提取(如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取)无量纲化(预处理)归一化标准化降维底方差过滤特征选择主成分分析-PCA降维1.特征工程API实例化转换器对象,转换器类有很多,都是Transformer的子类,
- 机器学习02
天行者@
机器学习人工智能深度学习
三、模型选择与调优1交叉验证(1)保留交叉验证HoldOutHoldOutCross-validation(Train-TestSplit)优点1.简单高效操作简便:这种方法的实现非常直接,只需要将原始数据集按照一定比例(常见的如70:30、80:20等)随机划分为训练集和测试集。例如,在Python的scikit-learn库中,使用train_test_split函数可以轻松完成划分,代码简洁
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs