Java线程池总结之从使用探究源码实现

先回顾下类关系图:
Java线程池总结之从使用探究源码实现_第1张图片

一般的使用方式:这里不用Executors帮助类,而是构建自己的线程池:

import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * Created by Administrator on 2016/7/21.
 */
public class ThreadPoolUtil {

    private static ThreadPoolUtil threadPoolUtil;
    private static ThreadPoolExecutor poolExecutor;

    //核心线程数
    private int corePoolSize = 5;
    //最大线程数据
    private int maximumPoolSize = 5;

    private ThreadPoolUtil() {

        poolExecutor = new ThreadPoolExecutor(corePoolSize,
                maximumPoolSize,
                0L,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue());
    }

    public static ThreadPoolUtil newInstance() {

        if (threadPoolUtil == null) {
            synchronized (ThreadPoolUtil.class) {
                if (threadPoolUtil == null) {
                    threadPoolUtil = new ThreadPoolUtil();
                }
            }
        }
        return threadPoolUtil;

    }

    public void execute(Runnable task) {
        poolExecutor.execute(task);
    }

    /**
     * 执行需要返回结果的任务
     */
    public Future execute(Callable task) {
        return poolExecutor.submit(task);
    }
}

简单的使用方式:

ThreadPoolUtil poolUtil = ThreadPoolUtil.newInstance();
poolUtil.execute(new Runnable() {...});
poolUtil.execute(new Runnable() {...});
poolUtil.execute(new Runnable() {...});
.
.
.

首先了解下构造函数的各个参数含义:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

corePoolSize : 核心线程数,也就是线程池中保持存活的线程有多少,包括正在执行任务和空闲的。
maximumPoolSize:最大线程数,也就是核心线程数全部都在执行任务,没有空闲的出来,且等待队列也已经装载满了,然后后又有新的任务需要执行,这时就会开启新的线程来执行,但总线程数:corePoolSize+newThreadSize <= maximumPoolSize。
keepAliveTime:多出的空闲线程存活的时间,也就是当前线程数大于核心线程数的这部分: nowThreadSize(当前线程总数) - corePoolSize 这部分的线程。
unit :线程存活的时间单位:有秒、分、时等等
workQueue :存放等待执行的任务队列
threadFactory :创建线程的工厂类、一般使用默认Executors.defaultThreadFactory()。
handler:处理多出的任务策略,也就是等待队列已满,最大线程数量中都没有空闲线程,此时还是有任务提交过来,就需要进行处理。有抛异常、不处理等。


提出问题:既然已经规定了核心线程数和最大线程数,当我们不断向线程池提交任务的时候,内部是否会进行开启核心线程数的线程进行并行执行任务,当再有任务提交的时候,就会放到等待队列中,直到队列满了,再开启线程来执行,当线程数据大于maximumPoolSize时,是否进行handler策略处理。

代码验证四部曲:

1.当需执行任务数小于核心线程数,池中的线程是否一开始就维持核心线程数的数量。
2.当执行任务数大于核心线程数,该任务是暂存在队列中还是立即开启新的线程执行。
3.当池中线程数量达到最大线程数时,且无空闲线程,队列也已经满了,此时还有新的任务提交过来,是否执行处理策略。

首先看已修改的类:

import java.util.concurrent.Callable;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

/**
 * Created by Administrator on 2016/7/21.
 */
public class ThreadPoolUtil {

    private static ThreadPoolUtil threadPoolUtil;
    private static ThreadPoolExecutor poolExecutor;

    //核心线程数
    private int corePoolSize = 2;
    //最大线程数据
    private int maximumPoolSize = 5;
    //创建等待队列大小而2
    private LinkedBlockingQueue queue = new LinkedBlockingQueue<>(2);

    private ThreadPoolUtil() {

        poolExecutor = new ThreadPoolExecutor(corePoolSize,
                maximumPoolSize,
                0L,
                TimeUnit.SECONDS,
                queue,
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

    public static ThreadPoolUtil newInstance() {

        if (threadPoolUtil == null) {
            synchronized (ThreadPoolUtil.class) {
                if (threadPoolUtil == null) {
                    threadPoolUtil = new ThreadPoolUtil();
                }
            }
        }
        return threadPoolUtil;

    }

    public void execute(Runnable task) {
        poolExecutor.execute(task);
    }

    /**
     * 执行需要返回结果的任务
     */
    public Future execute(Callable task) {
        return poolExecutor.submit(task);
    }

    /**
     * 获取当前执行任务的线程数
     * @return
     */
    public int getCurrentThreadNum(){
        return poolExecutor.getActiveCount();
    }

    /**
     * 获取当前等待任务数
     */
    public int getCurrentWaittingTaskNum(){
        return queue.size();
    }
    /**
     * 获取池中线程数量
     */
    public int getPoolSize(){
        return poolExecutor.getPoolSize();
    }
}

这里规定核心线程数为2、最大线程数为5、且等待队列的大小只能存放2个任务数的队列,使用了默认的线程工厂类和使用抛异常的处理策略:
AbortPolicy类

/**
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
    public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

Task类:

class MyTask implements Runnable {

    private String name;
    SimpleDateFormat df = new SimpleDateFormat("HH:mm:ss");

    public MyTask(String name) {
        this.name = name;
    }

    @Override
    public void run() {

        System.out.println(name + " is running --> time = " + df.format(new Date()));
        try {
            Thread.sleep(10000);//10s
            System.out.println(name + " is end--> time = " + df.format(new Date()));
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

 @Override
 public String toString() {
      return name;
 }
}

验证1:

   public static void main(String[] args) {

        ThreadPoolUtil poolUtil = ThreadPoolUtil.newInstance();
        poolUtil.execute(new MyTask("task1"));
        System.out.println("当前执行任务数为:" + poolUtil.getActiveCount());
        System.out.println("池中线程数:" + poolUtil.getPoolSize());
        System.out.println("当前等待执行任务数为:" + poolUtil.getCurrentWaittingTaskNum());

        try {
            Thread.sleep(15000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("--------------------------------------------");
        System.out.println("当前执行任务数为:" + poolUtil.getActiveCount());
        System.out.println("池中线程数:" + poolUtil.getPoolSize());
        System.out.println("当前等待执行任务数为:" + poolUtil.getCurrentWaittingTaskNum());

    }

只提交一个任务的结果:
poolUtil.execute(new MyTask(“task1”));

当前执行任务数为:1
task1 is running --> time = 14:13:45
池中线程数:1
当前等待执行任务数为:0
task1 is end--> time = 14:13:55
--------------------------------------------
当前执行任务数为:0
池中线程数:1
当前等待执行任务数为:0

提交2个任务的结果:
poolUtil.execute(new MyTask(“task1”));
poolUtil.execute(new MyTask(“task2”));

当前执行任务数为:2
池中线程数:2
task1 is running --> time = 14:15:25
task2 is running --> time = 14:15:25
当前等待执行任务数为:0
task2 is end--> time = 14:15:35
task1 is end--> time = 14:15:35
--------------------------------------------
当前执行任务数为:0
池中线程数:2
当前等待执行任务数为:0

结论:主要看池中的线程数,在规定核心线程数量下,并不是创建线程池然后内部就自动创建相应数量的线程,而是根据提交任务来创建,等任务执行完后才会保持规定的核心线程数的数量。

验证2:
提交4个任务:
poolUtil.execute(new MyTask(“task1”));
poolUtil.execute(new MyTask(“task2”));
poolUtil.execute(new MyTask(“task3”));
poolUtil.execute(new MyTask(“task4”));

task1 is running --> time = 14:23:25
task2 is running --> time = 14:23:25
当前执行任务数为:2
池中线程数:2
当前等待执行任务数为:2
task1 is end--> time = 14:23:35
task2 is end--> time = 14:23:35
task3 is running --> time = 14:23:35
task4 is running --> time = 14:23:35
--------------------------------------------
当前执行任务数为:2
池中线程数:2
当前等待执行任务数为:0
task4 is end--> time = 14:23:45
task3 is end--> time = 14:23:45

可以看到线程池中还是维持着2个线程数,由于核心线程数为2,所以多余的任务会存放在队列中,等待执行。

当执行5个任务时:
提交4个任务:
poolUtil.execute(new MyTask(“task1”));
poolUtil.execute(new MyTask(“task2”));
poolUtil.execute(new MyTask(“task3”));
poolUtil.execute(new MyTask(“task4”));
poolUtil.execute(new MyTask(“task5”));

task1 is running --> time = 14:30:06
task2 is running --> time = 14:30:06
当前执行任务数为:3
task5 is running --> time = 14:30:06
池中线程数:3
当前等待执行任务数为:2
task2 is end--> time = 14:30:16
task5 is end--> time = 14:30:16
task1 is end--> time = 14:30:16
task3 is running --> time = 14:30:16
task4 is running --> time = 14:30:16
--------------------------------------------
当前执行任务数为:2
池中线程数:2
当前等待执行任务数为:0
task3 is end--> time = 14:30:26
task4 is end--> time = 14:30:26

可以看到当等待队列满时,才会开启新的线程执行任务。

结论:当提交的任务数大于核心线程数时,会把任务放入到等待队列中,而不是开启新的线程执行,而是等队列满了,才会开启新的线程执行,而且池中的线程数也会恢复到核心线程数量,因为我们规定了keepAliveTime为0。

验证3:
提交9个任务:
poolUtil.execute(new MyTask(“task1”));
poolUtil.execute(new MyTask(“task2”));
poolUtil.execute(new MyTask(“task3”));
poolUtil.execute(new MyTask(“task4”));
poolUtil.execute(new MyTask(“task5”));
poolUtil.execute(new MyTask(“task6”));
poolUtil.execute(new MyTask(“task7”));
poolUtil.execute(new MyTask(“task8”));
poolUtil.execute(new MyTask(“task9”));

结果:
task1 is running –> time = 14:36:04
task5 is running –> time = 14:36:04
task2 is running –> time = 14:36:04
task6 is running –> time = 14:36:04
task7 is running –> time = 14:36:04
Exception in thread “main” java.util.concurrent.RejectedExecutionException:
Task task8 rejected from
java.util.concurrent.ThreadPoolExecutor@45ee12a7[Running, pool size = 5, active threads = 5, queued tasks = 2, completed tasks = 0]
task5 is end–> time = 14:36:14
task2 is end–> time = 14:36:14
task1 is end–> time = 14:36:14
task4 is running –> time = 14:36:14
task6 is end–> time = 14:36:14
task3 is running –> time = 14:36:14
task7 is end–> time = 14:36:14
task4 is end–> time = 14:36:24
task3 is end–> time = 14:36:24

可以看到task8提交时抛异常了,因为我们规定了核心线程数时2,最大线程数时5,等待队列的大小是2也就是说最多可以容纳7个任务数,当再提交任务时则就执行处理策略了,因为使用抛异常的处理策略。

结论:超过了最大线程数+队列的容量 的任务数则会执行处理策略。


源码探究:
从ThreadPoolExecutor类的execute方法入口:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) { //从这里可以看出当任务数小于核心线程数时,就添加任务并执行。
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {//从这里可以看到如果任务数大于核心线程数就会执行到这里,这里workQueue.offer(command)就会把任务添加进队列中
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))//否则如果队列都满了,且也无法执行新提交的任务,则会进行策略处理。
        reject(command);
}

接下来进入addWorker方法查看线程是如何被创建和执行任务的:

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;
        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask); //《1》创建一个Worker如要任务作为参数
        final Thread t = w.thread; //《2》从里面得到Thread
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start();//《3》开启线程
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

上面代码比较长,我们先不管各种条件的判断和加锁解锁的情况,从上面的注释我们可以看出先通过创建Worker对象,然后得到Thread对象,通过start执行任务。到这里,这不就像我们平常看到的开启一个线程执行任务的写法:new Thread(r).start()一样么,接下来我们进入Worker类看里面是怎么来的。

Worker类:

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;
    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;
    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }
    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

该类只截取了部分代码,其他代码这里用不到,大家可以观看源码,这里我们只关心构造函数和run方法。在构造方法中可以看到创建了Thread对象,然后在addWorker方法中:

...
 w = new Worker(firstTask);
final Thread t = w.thread;
...
if (workerAdded) {
     t.start();
     workerStarted = true;
}
...

调用了start方法,那么最终会通过底层创建线程然后执行run方法了。也就是这个方法:

/** Delegates main run loop to outer runWorker  */
public void run() {
    runWorker(this);
}

接着再进入runWorker方法探究探究:

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask; /* <1>首先获取提交的的任务*/
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();/* <2>最终会执行run方法*/
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

到这里可以看到任务被提交后是如何到最后被执行的==》通过excute 一个Runnable任务,先进行判断当前线程数是否小于核心线程数,如果小于,则通过构建Worker对象获取Thread执行start方法,最终底层会执行Worker的run方法,到此就调用我们通过excute传进来的run方法了。


到这里我的事情还没完!我们已经通过测试一次excute很多任务过来,然后没有空闲线程执行的任务肯定要放入队列中等待被执行的。上面我们知道创建了Thread了,就算把任务执行完了,我们就不能这样让它结束了,肯定要冲队列中取任务继续执行的,这时我们还是看回runWorker(Worker w)方法。

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) { //这里可以看到一个while循环,也就是不断从队列中取任务的,主要看getTask()方法
         .
         .//省略了很多行
         .
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}
private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
        int wc = workerCountOf(c);
        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }
        try {
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();//从这里三目运算符可以看出是从队列中取任务的。
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

到这里可以知道开启一个线程后进行不断的执行任务。
回到这里:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {//这里是任务数大于核心线程数时执行的任务添加进队列
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))//如果队列满了,就会执行到这里,如果还有任务提交过来的话,就尝试着是否能添加都工作中,不能的话就执行处理操作了。
        reject(command);
}

看reject方法:

final void reject(Runnable command) {
    handler.rejectedExecution(command, this);
}

此时的handler就是我们一开始创建的ThreadPoolExecutor.AbortPolicy对象了,也可以自己自定义处理策略。


到此源码就解释就到这里,其中很多没有提及,因为涉及到很多细节,这里只从我们使用流程来探究源码。

如有错漏,欢迎指出!

你可能感兴趣的:(java)