bp算法python实现(bpnn.py)

import math
import random

random.seed(0)

def rand(a, b):
return (b - a) * random.random() + a

def make_matrix(m, n, fill=0.0):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat

def sigmoid(x):
return 1.0 / (1.0 + math.exp(-x))

def sigmoid_derivative(x):
return x * (1 - x)

class BPNeuralNetwork:
def init(self):
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = []

def setup(self, ni, nh, no):
    self.input_n = ni + 1
    self.hidden_n = nh
    self.output_n = no
    # init cells
    self.input_cells = [1.0] * self.input_n
    self.hidden_cells = [1.0] * self.hidden_n
    self.output_cells = [1.0] * self.output_n
    # init weights
    self.input_weights = make_matrix(self.input_n, self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n, self.output_n)
    # random activate
    for i in range(self.input_n):
        for h in range(self.hidden_n):
            self.input_weights[i][h] = rand(-0.2, 0.2)
    for h in range(self.hidden_n):
        for o in range(self.output_n):
            self.output_weights[h][o] = rand(-2.0, 2.0)
    # init correction matrix
    self.input_correction = make_matrix(self.input_n, self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n, self.output_n)

def predict(self, inputs):
    # activate input layer
    for i in range(self.input_n - 1):
        self.input_cells[i] = inputs[i]
    # activate hidden layer
    for j in range(self.hidden_n):
        total = 0.0
        for i in range(self.input_n):
            total += self.input_cells[i] * self.input_weights[i][j]
        self.hidden_cells[j] = sigmoid(total)
    # activate output layer
    for k in range(self.output_n):
        total = 0.0
        for j in range(self.hidden_n):
            total += self.hidden_cells[j] * self.output_weights[j][k]
        self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]

def back_propagate(self, case, label, learn, correct):
    # feed forward
    self.predict(case)
    # get output layer error
    output_deltas = [0.0] * self.output_n
    for o in range(self.output_n):
        error = label[o] - self.output_cells[o]
        output_deltas[o] = sigmoid_derivative(self.output_cells[o]) * error
    # get hidden layer error
    hidden_deltas = [0.0] * self.hidden_n
    for h in range(self.hidden_n):
        error = 0.0
        for o in range(self.output_n):
            error += output_deltas[o] * self.output_weights[h][o]
        hidden_deltas[h] = sigmoid_derivative(self.hidden_cells[h]) * error
    # update output weights
    for h in range(self.hidden_n):
        for o in range(self.output_n):
            change = output_deltas[o] * self.hidden_cells[h]
            self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
            self.output_correction[h][o] = change
    # update input weights
    for i in range(self.input_n):
        for h in range(self.hidden_n):
            change = hidden_deltas[h] * self.input_cells[i]
            self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
            self.input_correction[i][h] = change
    # get global error
    error = 0.0
    for o in range(len(label)):
        error += 0.5 * (label[o] - self.output_cells[o]) ** 2
    return error

def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
    for j in range(limit):
        error = 0.0
        for i in range(len(cases)):
            label = labels[i]
            case = cases[i]
            error += self.back_propagate(case, label, learn, correct)

def test(self):
    cases = [
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1],
    ]
    labels = [[0], [1], [1], [0]]
    self.setup(2, 5, 1)
    self.train(cases, labels, 10000, 0.05, 0.1)
    for case in cases:
        print(self.predict(case))

if name == ‘main‘:
nn = BPNeuralNetwork()
nn.test()

你可能感兴趣的:(数据挖掘,机器学习)