NVIDIA DeepStream SDK on Tesla V2.0的环境要求为:
官方安装指导为:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
在命令行中应做如下选择:(由于已经安装了不同版本的cuda,并没有选择直接生成软链接。)
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 396.26?
(y)es/(n)o/(q)uit: n
Install the CUDA 9.2 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-9.2 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: n
Install the CUDA 9.2 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/deepstream ]:
Installing the CUDA Toolkit in /usr/local/cuda-9.2 ...
Missing recommended library: libXmu.so
Installing the CUDA Samples in /home/deepstream ...
Copying samples to /home/deepstream/NVIDIA_CUDA-9.2_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-9.2
Samples: Installed in /home/deepstream, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-9.2/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-9.2/lib64, or, add /usr/local/cuda-9.2/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.2/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.2/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.2 functionality to work.
To install the driver using this installer, run the following command, replacing
sudo
然后sudo vim .bashrc,按照提示:
- PATH includes /usr/local/cuda-9.2/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-9.2/lib64
再source .bashrc完成更新。如果nvcc --version则可以看到安装成功:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Wed_Apr_11_23:16:29_CDT_2018
Cuda compilation tools, release 9.2, V9.2.88
注意需要cuDNN 7.1.3 环境,但是官网上我只找到有7.1.2和7.1.4?那就赌一把7.1.4向下兼容吧
我选择了:
cuDNN v7.1.4 Library for Linux
在官网https://developer.nvidia.com/nvidia-tensorrt-download 上下载tar包,然后
tar -xf TensorRT-4.0.1.6.Ubuntu-16.04.4.x86_64-gnu.cuda-9.2.cudnn7.1.tar
vim ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-4.0.1.6/lib
source ~/.bashrc~/TensorRT-4.0.1.6/python$ sudo pip2 install tensorrt-4.0.1.6-cp27-cp27mu-linux_x86_64.whl
随后安装Python UFF package
~/TensorRT-4.0.1.6/uff$ sudo pip2 install uff-0.4.0-py2.py3-none-any.whl
再安装Python graphsurgeon package
~/TensorRT-4.0.1.6/graphsurgeon$ sudo pip2 install graphsurgeon-0.2.0-py2.py3-none-any.whl
OpenCV 3.4.x
Gstreamer 1.8.3
sudo apt-get install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav gstreamer1.0-doc gstreamer1.0-tools
如果出现错误:dpkg: error processing package initramfs-tools (--configure):
subprocess installed post-installation script returned error exit status 1
Errors were encountered while processing:
initramfs-tools的错误,不要慌,执行:
sudo rm -f /var/lib/dpkg/info/initramfs-tools.post*
sudo rm -f /var/lib/dpkg/info/initramfs-tools.pre*
sudo rm -f /var/lib/dpkg/info/bcmwl-kernel-source.post*
sudo rm -f /var/lib/dpkg/info/bcmwl-kernel-source.pre*
sudo dpkg --configure -a
NVIDIA driver396+
sudo apt install nvidia-396
如果出现Failed to initialize NVML: Driver/library version mismatch,不要慌,重启即可。
(未完待续)