resnet图像分类pytorch实现

resnet图像分类pytorch实现

必要说明

此程序为本人以学习pytorch为目的写的第一个练习程序。

在Ubuntu16.04.5的服务器上。

pytorch版本为0.4.1。

数据集是AI_challenger大赛2018年农作物病虫害检测赛道的数据集,数据集具体说明可访问比赛官网查看。

加载预训练好的resnet34作为特征提取器来训练的,超参数全部都是随便给的,准确率最后仅可达80%。

为了用tensorboard实现可视化,需要在程序文件同目录下新建一个logger.py文件,并把这个网址里的代码复制到logger.py里。启动tensorboard方法:在终端输入:tensorboard --logdir=’./logs’,会生成一个链接,用Chrome浏览器打开这个链接就可以打开tensorboard看可视化的效果了。与matplotlib实现的可视化相比,tensorboard是可以动态看可视化效果的。

程序

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from PIL import Image
import pandas as pd
import os
from torchvision import models, transforms
from logger import Logger

import time

num_categories = 61  # 24*2+3+10
annotations_file_train = "/home/yiming_hao/data/AI_Challenger/2018_农作物病虫害检测/\
AgriculturalDisease_trainingset/AgriculturalDisease_train_annotations.json"
images_folder_train = "/home/yiming_hao/data/AI_Challenger/2018_农作物病虫害检测/\
AgriculturalDisease_trainingset/images"
annotations_file_val = "/home/yiming_hao/data/AI_Challenger/2018_农作物病虫害检测/\
AgriculturalDisease_validationset/AgriculturalDisease_validation_annotations.json"
images_folder_val = "/home/yiming_hao/data/AI_Challenger/2018_农作物病虫害检测/\
AgriculturalDisease_validationset/images"

class ImageDataset(torch.utils.data.Dataset):

    def __init__(self, annotations_file, images_folder, transforms=None):
        self.annotations_train = pd.read_json(annotations_file)
        self.images_folder = images_folder
        self.transforms = transforms
        self.num_examples = self.annotations_train.shape[0]
        print('样本数为: {}'.format(self.num_examples))

    def __len__(self):
        return self.num_examples

    def __getitem__(self, index):
        label = torch.tensor(self.annotations_train.ix[index]['disease_class'], dtype=torch.long)
        feature = Image.open(self.images_folder + '/' + self.annotations_train.ix[index]['image_id'])
        if self.transforms:
            feature = self.transforms(feature)
        sample = (feature, label)
        return sample

transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ]),
}

datasets = {
    'train':ImageDataset(annotations_file_train, images_folder_train, transforms['train']),
    'val':ImageDataset(annotations_file_val, images_folder_val, transforms['val'])
}

dataloaders = {x: torch.utils.data.DataLoader(datasets[x], batch_size=64, shuffle=True, num_workers=4) for x in ['train', 'val']}

dataset_sizes = {x: len(datasets[x]) for x in ['train', 'val']}

device = torch.device("cuda:1" )

def initialize_model(model_name, num_categories, finetuning=False, pretrained=True):

    if model_name == 'resnet18':
        model = models.resnet18(pretrained=pretrained)
        if finetuning == True:
            pass
        else:
            for param in model.parameters():
                param.requires_grad = False
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, num_categories)
        model = model.to(device)
    elif model_name == 'resnet34':
        model = models.resnet34(pretrained=pretrained)
        if finetuning == True:
            pass
        else:
            for param in model.parameters():
                param.requires_grad = False
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, num_categories)
        model = model.to(device)
    else:
        model = None
    return model

def train_model(model, criterion, optimizer, scheduler, pre_epoch, num_epochs, logger):
    since = time.time()
    best_acc = 0.0

    for epoch in range(pre_epoch, num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  
            else:
                model.eval()  

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            logger.scalar_summary('loss',epoch_loss,epoch)
            epoch_acc = running_corrects.double() / dataset_sizes[phase]
            logger.scalar_summary('acc', epoch_acc, epoch)

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                checkpoint_path = './checkpoints/state-best.tar'
                torch.save({
                    'epoch':epoch,
                    'model_state_dict':model.state_dict(),
                    'optimizer_state_dict':optimizer.state_dict(),
                    'loss':epoch_loss,
                    'acc':best_acc
                },checkpoint_path)
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))
    checkpoint = torch.load('./checkpoints/state-best.tar')
    model.load_state_dict(checkpoint['model_state_dict'])
    return model

model = initialize_model('resnet34',num_categories)
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
pre_epoch = 0

logger = Logger('./logs')

if os.listdir('./checkpoints'):  # 如果checkpoint文件夹非空,即之前已经有保存过的数据(模型参数等),则加载以前保存过的最好的一组状态
    print('loading previous state............')
    checkpoint = torch.load('./checkpoints/state-best.tar')
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    pre_epoch = checkpoint['epoch']
    loss = checkpoint['loss']  # 暂时保留未用

model = train_model(model, criterion, optimizer, exp_lr_scheduler, pre_epoch, 1000, logger)#两分种一个epoch,跑8个小时,就是240个epoch

作者:郝义铭

邮箱:[email protected]

你可能感兴趣的:(项目)