sqlalchemy 作为一款ORM在操作数据库方面非常的方便,这里总结了一些对应关系的设置以及查询方法!
使用外键关联表:
表设计
from sqlalchemy import Column, ForeignKey
from sqlalchemy.types import String, Integer, CHAR, BIGINT
class Blog(BaseModel):
__tablename__ = 'blog'
id = Column(BIGINT, primary_key=True, autoincrement=True)
title = Column(String(64), server_default='', nullable=False)
text = Column(String, server_default='', nullable=False)
user = Column(BIGINT, ForeignKey('user.id'), index=True, nullable=False)
create = Column(BIGINT, index=True, server_default='0', nullable=False)
class User(BaseModel):
__tablename__ = 'user'
id = Column(BIGINT, primary_key=True, autoincrement=True)
name = Column(String(32), server_default='', nullable=False)
username = Column(String(32), index=True, server_default='', nullable=True)
password = Column(String(64), server_default='', nullable=False)
提交数据
session = Session()
user = User(name='first', username=u'新的')
session.add(user)
session.flush()#这个为了放回 id
blog = Blog(title=u'第一个', user=user.id)
session.add(blog)
session.commit()
一: 一对多关系
表设计
class Parent(Base): # 一
__tablename__ = 'parent'
id = Column(Integer, primary_key=True)
name = Column(String(64),nullable=False)
full_name = Column(String(64))
children = relationship("Child")
# 默认返回的是列表,collection_class=set 加他返回的是集合,
#collection_class=attribute_mapped_collection('name') 返回的是name 字典 值从属性中取
#collection_class=mapped_collection(lambda children: children.name.lower() 这个可以自定义值
# 在父表类中通过 relationship() 方法来引用子表的类集合
class Child(Base): #多
__tablename__ = 'child'
id = Column(Integer, primary_key=True)
name = Column(String(64),nullable=False)
full_name = Column(String(64))
parent_id = Column(Integer, ForeignKey('parent.id'))
# 在子表类中通过 foreign key (外键)引用父表的参考字段
添加数据
parent = Parent(name='morgan', full_name='morganlions')
parent.children = Child(name='child 1 name',full_name='child 1 full name')
session.add(parent)
session.commit()
#如果parent 已经存在
parent = session.query(Parent).filter(Parent.name=='Morgan')
children = [
Child(name='child 2', full_name='child 2 full name', parent_obj = parent),
Child(name='child 3', full_name='child 3 full name', parent_obj = parent),
]
session.add_all(children)
session.commit()
查询数据(单向关系)
parent = session.query(Parent).get(1)
print(parent.children)
#一对多查询
parent = session.query(Parent).filter(Parent.children.any(Child.name==u'child 1')).first()
二:多对一关系
这个相比上面的一对多而言是双向的关系.
表设计
class Parent(Base):#一
__tablename__ = 'parent'
id = Column(Integer, primary_key=True)
name = Column(String(64), nullable=False)
full_name = Column(String(64))
children = relationship("Child", back_populates="parent", lazy="dynamic")
class Child(Base):#多
__tablename__ = 'child'
id = Column(Integer, primary_key=True)
name = Column(String(64), nullable=False)
full_name = Column(String(64))
parent_id = Column(Integer, ForeignKey('parent.id'))
parent = relationship("Parent", order_by = 'Parent.id' back_populates="children")
# 子表类中附加一个 relationship() 方法
# 并且在(父)子表类的 relationship() 方法中使用 relationship.back_populates 参数
添加数据
这个和单向的一样,不过可以反过来操作
查询数据(双向关系)
parent = session.query(Parent).get(1)
print(parent.children)
children = session.query(Child).get(1)
print(children.parent)
# lazy="dynamic" 我们添加 这个后可以子查询关联表的时候自由的选择
print(parent.children.all())
print(patent.children.filter(Child.name='child1').first()
#多对一查询父亲
children = session.query(Child).filter(Child.parent_obj.has(Parent.name=='morgan')).first()
三:多对多关系
单向多对多
通过中间表 association 关联表 链接 left 和 right 两张表 left -> right ,建立的是单向关系
# 多对多关系中的两个表之间的一个关联表
association_table = Table('association', Base.metadata,
Column('left_id', Integer, ForeignKey('left.id')),
Column('right_id', Integer, ForeignKey('right.id'))
)
class Parent(Base):
__tablename__ = 'left'
id = Column(Integer, primary_key=True)
children = relationship("Child",secondary=association_table)
# 在父表中的 relationship() 方法传入 secondary 参数,其值为关联表的表名
class Child(Base):
__tablename__ = 'right'
id = Column(Integer, primary_key=True)
双向多对多
通过中间表 association 关联表 链接 left 和 right 两张表 left <-> right ,建立的是双向关系
association_table = Table('association', Base.metadata,
Column('left_id', Integer, ForeignKey('left.id')),
Column('right_id', Integer, ForeignKey('right.id'))
)
class Parent(Base):
__tablename__ = 'left'
id = Column(Integer, primary_key=True)
children = relationship("Child", secondary=association_table,back_populates="parents")
class Child(Base):
__tablename__ = 'right'
id = Column(Integer, primary_key=True)
parents = relationship( "Parent",secondary=association_table,back_populates="children")
下面是一种比较简洁的建立双向多对多关系的方法,上面的方法中我们用的是 back_populates ,下面我们将其换成,backref,这样我们只需要在第一个双向关系建立的时候,建立反向双向关系。
association_table = Table('association', Base.metadata,
Column('left_id', Integer, ForeignKey('left.id')),
Column('right_id', Integer, ForeignKey('right.id'))
)
class Parent(Base):
__tablename__ = 'left'
id = Column(Integer, primary_key=True)
name = Column(String(64),nullable=False, index=True)
full_name = Column(String(64))
children = relationship("Child",secondary=association_table, backref="parents")
class Child(Base):
__tablename__ = 'right'
name = Column(String(64),nullable=False, index=True)
full_name = Column(String(64))
id = Column(Integer, primary_key=True)
secondary 可以作为回调函数返回一个值
class Parent(Base):
__tablename__ = 'left'
id = Column(Integer, primary_key=True)
children = relationship("Child",secondary=lambda: association_table,backref="parents")
多对多关系添加数据:
parent = Parent(name='Morgan',full_name='MorganLions')
parent.children = [Child(name='child name',full_name='child full name')]
#提交数据
session.add(parent)
session.commit()
#如果是双向关系也可以这样添加
child = Child(name='child name',full_name='child full name'}
child.parents = [Parent(name='Morgan', full_name ='Morgan Lions')]
session.add(child)
session.commit()
session = Session()
#找出数据在添加
parent = session.query(Parent).filter(Parent.name=='Morgan').one()
parent.children = [Child(name='child name',full_name='child full name')]
session.commit()
#删除多对多中间关系,不删除实体,这里我们对应的是children
#1清除parent 中的 children 数据
parent = session.query(Parent).filter(Parent.name='Morgan').one()
parent.children=[]
session.commit()
#2删除两个表对应的关系
children = session.query(Child).filter(Child.name='child 1').one()
parent.children.remove(children)
session.commit()
#删除实体,不删除关系
# 1:创建要实验的数据
parent = session.query(Parent).filter(Parent.name=='Morgan').one()
children = Child(name='child 5)
parent.children = [children]
session.commit()
#2: 删除实体
children = session.query(Child).filter(Child.name=='child 5').one()
session.delete(children)
session.commit()
多对多关系查询数据
1:这是一种方法通过对象的方法去转换,当然你也可以直接返回去用,我需要列表的形式,还有另外的一种方法,自己写个方法在模型文件中,就是你建立数据库文件的表中添加相应的方法,这里我贴出自己的方法,欢迎指正,谢谢。
#单条数据查询
parent = session.query(Parent).get(1)
#找到儿子
print(parent.children)
children = session.query(Child).get(1)
#找到父亲
print(children.parent)
#多条数据查询
parent = session.query(Parent).order_by(Parent.id)
count = parent.count() #计数
page = ...
limit = ...
parent = parent.offset(page).limit(limit)
result = []
for p in parent.all():
arg ={}
arg['id'] = p.id
arg['name'] = p.name
arg['full_name'] = p.full_name
arg['children'] = {c.name:c.full_name for c in p.children}
result.append(arg)
print(result)
2:在模型中添加如下的方法,这个方法,如果去关联多对多查询,比较慢,因为本质上而言,还是和数据库的多表查询没有什么区别,还是要转换成对应的sql语句去执行,速度自然就慢了,建议在列表中尽量不要用这种多表联合查询。性能很不好。
def column_dict(self, params=None, operation=None, relation=None):
'''
sql查询返回字典
:param params: 需要显示的字段
:param operation:操作方法
{'one':func1 'two': func2 , 'param':'提示术语'}
{'one':func1 'two': 'param':'提示术语'}
{'one':func1 'two': func2 }
param 作为第二个函数的参数,也可以作为单独的提示
:param relation
:return:
'''
model_dict = dict(self.__dict__)
del model_dict['_sa_instance_state']
if params:
keys = [k for k in model_dict.keys()]
for key in keys:
if key not in params:
del model_dict[key]
if relation:
for r in relation:
rel = eval('self.{0}'.format(r))
result = [self.change_str(operation, x.column_dict()) for x in rel]
model_dict['{0}'.format(r)] = result
if operation:
model_dict = self.change_str(operation, model_dict)
if isinstance(model_dict, str):
return False, 'model_dict', 0
return model_dict
Base.column_dict = column_dict
@staticmethod
def change_str(operation, model_dict):
'''
改变输出类型
:param operation:
:param model_dict:
:return:
'''
for key, funcs in operation.items():
method = model_dict[key]
func = funcs.get('one')
second_func = funcs.get('two')
param = funcs.get('param')
if param and func and second_func:
model_dict[key] = func(method) if method else second_func(param)
elif second_func is None and func and param:
model_dict[key] = func(method) if method else param
elif param is None and func and second_func:
model_dict[key] = func(method) if method else second_func()
else:
return '操作函数设置错误'
return model_dict
#调用
parent = session.query(Parent)
operation = {
'name: {'one': func, 'param': '参数'},
}
relation = ['children']
result = [x.column_dict(operation=operation, relation=relation) for x in parent]
这个方法也可以不传参数,直接调用,可以直接返回字典,返回的是所有字段,如果要自己选定字段需要传参数params=‘字段1,字段二’,这个方法可以关联很多表,但速度可想而知。在不关联的情况下查询速度180ms 左右,关联一个表600ms 左右,关联 二个 1000ms左右,以此类推。还是那句话,不建议列表中关联查询,更不要用这样的多对多的关系。
sqlalchemy自动关系
看到这里你可能会想,太麻烦了,有没有能自动关联的关系呢,答案是有的,在relationship 中有个参数cascade
cascade 所有的可选字符串项是:
all , 所有操作都会自动处理到关联对象上.
save-update , 关联对象自动添加到会话.
delete , 关联对象自动从会话中删除.
delete-orphan , 属性中去掉关联对象, 则会话中会自动删除关联对象.**只适用于一对多的关系**
merge , session.merge() 时会处理关联对象.
refresh-expire , session.expire() 时会处理关联对象.
expunge , session.expunge() 时会处理关联对象.
delete
class Blog(BaseModel):
__tablename__ = 'blog'
id = Column(BIGINT, primary_key=True, autoincrement=True)
title = Column(String(64), server_default='', nullable=False)
user = Column(BIGINT, ForeignKey('user.id'), index=True, nullable=False)
class User(BaseModel):
__tablename__ = 'user'
id = Column(BIGINT, primary_key=True, autoincrement=True)
name = Column(String(32), server_default='', nullable=False)
blog_list = relationship('Blog', cascade='save-update, delete')
if __name__ == '__main__':
session = Session()
#user = User(name=u'用户')
#user.blog_list = [Blog(title=u'哈哈')]
#session.add(user)
user = session.query(User).first()
session.delete(user)
session.commit()
merge 有则修改,无则创建
class Blog(BaseModel):
__tablename__ = 'blog'
id = Column(BIGINT, primary_key=True, autoincrement=True)
title = Column(String(64), server_default='', nullable=False)
user = Column(BIGINT, ForeignKey('user.id'), index=True, nullable=False)
class User(BaseModel):
__tablename__ = 'user'
id = Column(BIGINT, primary_key=True, autoincrement=True)
name = Column(String(32), server_default='', nullable=False)
blog_list = relationship('Blog', cascade='save-update, delete, delete-orphan, merge')
if __name__ == '__main__':
session = Session()
user = User(id=1, name='1')
session.add(user)
session.commit(user)
user = User(id=1, blog_list=[Blog(title='哈哈')])
session.merge(user)
session.commit()
属性代理
from sqlalchemy.ext.associationproxy import association_proxy
class Blog(BaseModel):
__tablename__ = 'blog'
id = Column(Integer, autoincrement=True, primary_key=True)
title = Column(Unicode(32), nullable=False, server_default='')
user = Column(Integer, ForeignKey('user.id'), index=True)
#对应的属性代理设置
def __init__(self, title):
self.title = title
class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, autoincrement=True, primary_key=True)
name = Column(Unicode(32), nullable=False, server_default='')
blog_list = relationship('Blog')
blog_title_list = association_proxy('blog_list', 'title')
有的时候我们只需要处理对应的一个,比如上面这个,我们指出了blog_list 中的title
#设置与调用
session = Session()
user = User(name='xxx')
user.blog_list = [Blog(title='ABC')]
session.add(user)
session.commit()
user = session.query(User).first()
print user.blog_title_list
#如果我们希望像下面这样更改数据
user = session.query(User).first()
user.blog_title_list = ['NEW']
session.add(user)
session.commit()
#需要在代理设置那个类中添加对应的 __init__ 方法
def __init__(self, title):
self.title = title
#也可以这样
blog_title_list = association_proxy('blog_list', 'title',creator=lambda t: User(title=t))
查询方法
class Blog(BaseModel):
__tablename__ = 'blog'
id = Column(Integer, autoincrement=True, primary_key=True)
title = Column(Unicode(32), server_default='')
user = Column(Integer, ForeignKey('user.id'), index=True)
user_obj = relationship('User')
user_name = association_proxy('user_obj', 'name')
查询:
blog = session.query(Blog).filter(Blog.user_name == u'XX').first()
反过来查询
user = session.query(User).filter(User.blogs_title.contains('A')).first()