Android中常用压缩方法分为2种:一种是降采样率压缩,另外一种是质量压缩。
第一种:
BitmapFactory.Options o = new BitmapFactory.Options();
o.inJustDecodeBounds = true;
BitmapFactory.decodeFile(path, o);
o.inSampleSize=自己计算
o.inJustDecodeBounds = false;
BitmapFactory.decodeFile(path, o);
第二种:
bitmap.compress(Bitmap.CompressFormat.JPEG, 20, new FileOutputStream("sdcard/result.jpg"));
相信大家都用过,但是压缩比例很小,如果压缩的太多,就会导致图片失真,但是我发发现IOS系统上的图片只有100k,200k左右却很清晰,它们用的什么方式来压缩的呢?
今天我们就来使用jpeg的方式来进行对图片压缩:
ndk工具包下载可以到http://www.androiddevtools.cn/ 下载解压就行了
libjpeg库源码
git clone git://git.linaro.org/people/tomgall/libjpeg-turbo/libjpeg-turbo.git -b linaro-android
用ndk命令进行编译
ndk-build APP_ABI=armeabi-v7a,armeabi
public class ImageUtil {
static {
System.loadLibrary("compressImage");
}
/**
* 使用libjpeg进行压缩
* @param bitmap 压缩的图片
* @param quality 质量
* @param dstFile 新的图片路径
* @param optimize 是否使用哈夫曼算法完成压缩(使用哈夫曼算法压缩,压缩率高10~25倍)
* @return 是否压缩成功
*/
public static boolean compressImage(Bitmap bitmap,int quality,String dstFile,boolean optimize){
int ret = compressBitmap( bitmap, quality, dstFile, optimize);
return ret==1;
}
public static native int compressBitmap(Bitmap bitmap, int quality, String dstFile,boolean optimize);
javah -classpath . -jni github.com.androidadvanced_ndk.util.ImageUtil
cmake_minimum_required(VERSION 3.4.1)
set(distribution_DIR ../../../../libs )
set(SOURCE_FILES src/main/cpp/compressImage.cpp)
set(INC_DIR src/main/cpp/include)
include_directories(src/main/cpp/include)
find_library( log-lib
log )
find_library(graphics jnigraphics)
add_library( libjpeg
SHARED
IMPORTED )
set_target_properties( libjpeg
PROPERTIES IMPORTED_LOCATION
${distribution_DIR}/${ANDROID_ABI}/libjpeg.so)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++11")
add_library( compressImage
SHARED
${SOURCE_FILES} )
target_link_libraries( compressImage
libjpeg
${log-lib}
${graphics})
ndk{
abiFilters "armeabi-v7a" ,"armeabi"
}
sourceSets {
main {
jniLibs.srcDirs = ['libs']
}
}
#include
#include
#include
#include "github_com_androidadvanced_ndk_util_ImageUtil.h"
#include
#include
#include
#include
#define LOGI(FORMAT,...) __android_log_print(ANDROID_LOG_INFO,"imagecompress",FORMAT,##__VA_ARGS__);
#define LOGE(FORMAT,...) __android_log_print(ANDROID_LOG_ERROR,"imagecompress",FORMAT,##__VA_ARGS__);
#define LOGW(FORMAT,...) __android_log_print(ANDROID_LOG_WARN,"imagecompress",FORMAT,##__VA_ARGS__);
#define LOGD(FORMAT,...) __android_log_print(ANDROID_LOG_DEBUG,"imagecompress",FORMAT,##__VA_ARGS__);
typedef u_int8_t BYTE;
struct my_error_mgr {
struct jpeg_error_mgr pub;
jmp_buf setjmp_buffer;
};
typedef struct my_error_mgr *my_error_ptr;
METHODDEF(void)
my_error_exit(j_common_ptr
cinfo) {
my_error_ptr myerr = (my_error_ptr) cinfo->err;
(*cinfo->err->output_message)(cinfo);
LOGW("jpeg_message_table[%d]:%s",
myerr->pub.msg_code, myerr->pub.jpeg_message_table[myerr->pub.msg_code]);
longjmp(myerr
->setjmp_buffer, 1);
};
/**
* 压缩的数据 宽 高 压缩质量 存放路径 是否使用哈夫曼算法完成压缩
*/
int generateJPEG(BYTE *data, int w, int h, jint quality, const char *name, boolean optimize);
int generateJPEG(BYTE *data, int w, int h, int quality, const char *name, boolean optimize) {
int nComponent = 3;
struct jpeg_compress_struct jcs;
//自定义的error
struct my_error_mgr jem;
jcs.err = jpeg_std_error(&jem.pub);
jem.pub.error_exit = my_error_exit;
if (setjmp(jem.setjmp_buffer)) {
return 0;
}
//为JPEG对象分配空间并初始化
jpeg_create_compress(&jcs);
//获取文件信息
FILE *f = fopen(name, "wb");
if (f == NULL) {
return 0;
}
//指定压缩数据源
jpeg_stdio_dest(&jcs, f);
jcs.image_width = w;
jcs.image_height = h;
jcs.arith_code = false;
jcs.input_components = nComponent;
jcs.in_color_space = JCS_RGB;
jpeg_set_defaults(&jcs);
jcs.optimize_coding = optimize;
//为压缩设定参数,包括图像大小,颜色空间
jpeg_set_quality(&jcs, quality, true);
//开始压缩
jpeg_start_compress(&jcs, true);
JSAMPROW row_point[1];
int row_stride;
row_stride = jcs.image_width * nComponent;
while (jcs.next_scanline < jcs.image_height) {
row_point[0] = &data[jcs.next_scanline * row_stride];
jpeg_write_scanlines(&jcs, row_point, 1);
}
if (jcs.optimize_coding) {
LOGI("使用了哈夫曼算法完成压缩");
} else {
LOGI("未使用哈夫曼算法");
}
//压缩完毕
jpeg_finish_compress(&jcs);
//释放资源
jpeg_destroy_compress(&jcs);
fclose(f);
return 1;
}
/*
* Class: github_com_androidadvanced_ndk_util_ImageUtil
* Method: compressBitmap
* Signature: (Ljava/lang/Object;ILjava/lang/String;B)I
*/
JNIEXPORT jint JNICALL Java_github_com_androidadvanced_1ndk_util_ImageUtil_compressBitmap
(JNIEnv * env, jclass clazz, jobject bitmap, jint quality, jstring dstFile,jboolean optimize){
LOGE("%s", "===>Java_github_com_androidadvanced_1ndk_util_ImageUtil_compressBitmap");
int ret;
AndroidBitmapInfo bitmapInfo;
//像素点argb
BYTE *pixelsColor;
//bitmap 数据
BYTE *data;
BYTE *tmpData;
//获取android bitmap 信息
if((ret = AndroidBitmap_getInfo(env,bitmap,&bitmapInfo)) < 0){
LOGD("AndroidBitmap_getInfo() failed error=%d", ret);
return ret;
}
//锁定bitmap,获取像素点argb,存储到pixelsColor中
if((ret = AndroidBitmap_lockPixels(env,bitmap,(void**)&pixelsColor)) < 0){
LOGD("AndroidBitmap_lockPixels() failed error=%d", ret);
return ret;
}
BYTE r, g, b;
int color;
//获取图片信息
int w, h, format;
w = bitmapInfo.width;
h = bitmapInfo.height;
format = bitmapInfo.format;
//只处理 RGBA_8888
if(format != ANDROID_BITMAP_FORMAT_RGBA_8888){
LOGD("AndroidBitmapInfo format is not ANDROID_BITMAP_FORMAT_RGBA_8888 error=%d", ret);
return -1;
}
LOGD("bitmap: width=%d,height=%d,size=%d , format=%d ", w,h,w*h,bitmapInfo.format);
//分配内存(存放bitmap rgb数据)
data = (BYTE *) malloc(w * h * 3);
//保存内存首地址
tmpData=data;
//将bitmap转rgb
int i=0;
int j=0;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j){
//像素点
color = *((int*) pixelsColor);
//取argb值(各占8位) 0xffffffff--->0xaarrggbb
r= (color >> 16) & 0xff;
g= (color >> 8) & 0xff;
b= (color >> 0) & 0xff;
*data=b;
*(data+1)=g;
*(data+2)=g;
//data只存rgb
data+=3;
//pixelsColor中存的是argb
pixelsColor+=4;
}
}
AndroidBitmap_unlockPixels(env,bitmap);
//进行压缩
const char* file_path = env->GetStringUTFChars(dstFile,NULL);
//压缩图片
ret = generateJPEG(tmpData,w,h,quality,file_path,optimize);
//释放内存
free((void *) tmpData);
env->ReleaseStringUTFChars(dstFile,file_path);
//释放java-->bitmap
jclass jBitmapClass = env->GetObjectClass(bitmap);
jmethodID jRecycleMethodId = env->GetMethodID(jBitmapClass,"recycle","()V");
env->CallVoidMethod(bitmap,jRecycleMethodId,NULL);
return ret;
}
每行都有注释,相信大家一看就明白了。这边不多做解释了。
//线程安全
CopyOnWriteArrayList compressImageList=new CopyOnWriteArrayList<>();
//开线程池
ThreadPoolManager.ThreadPool threadPool = ThreadPoolManager.getInstance().getShortTreadPool();
for (final String imagePath : imageList) {
final String temFilePath = temDir + File.separator + new File(imagePath).getName();
threadPool.excute(new Runnable() {
@Override
public void run() {
Bitmap bitmap = ImageUtil.decodeFile(imagePath);
if(ImageUtil.compressImage(bitmap,65,temFilePath,true)){
compressImageList.add(temFilePath);
}
if(bitmap != null) {
bitmap.recycle();
}
}
});
}
这边就多了一个线程池,其实也没什么东西,简单的调用。
下面我们来看下效果
我们对比发现,压缩了20几倍,那么图片的清晰度呢?有没有改变,或者说改变的大不大,又没有失真?
不知道你们能不能看出区别,反正我没发现有多大改变。