- OpenAI o1 的价值意义及“强化学习的Scaling Law” & Kimi创始人杨植麟最新分享:关于OpenAI o1新范式的深度思考
光剑书架上的书
ChatGPT大数据AI人工智能计算人工智能算法机器学习
OpenAIo1的价值意义及“强化学习的ScalingLaw”蹭下热度谈谈OpenAIo1的价值意义及RL的Scalinglaw。一、OpenAIo1是大模型的巨大进步我觉得OpenAIo1是自GPT4发布以来,基座大模型最大的进展,逻辑推理能力提升的效果和方法比预想的要好,GPT4o和o1是发展大模型不同的方向,但是o1这个方向更根本,重要性也比GPT4o这种方向要重要得多,原因下面会分析。为什
- 缩小模拟与现实之间的差距:使用 NVIDIA Isaac Lab 训练 Spot 四足动物运动
AI人工智能集结号
人工智能
目录在IsaacLab中训练四足动物的运动能力目标观察和行动空间域随机化网络架构和RL算法细节先决条件用法训练策略执行训练好的策略结果使用JetsonOrin在Spot上部署经过训练的RL策略先决条件JetsonOrin上的硬件和网络设置Jetson上的软件设置运行策略开始开发您的自定义应用程序由于涉及复杂的动力学,为四足动物开发有效的运动策略对机器人技术提出了重大挑战。训练四足动物在现实世界中上
- Codeforces Round 969 (Div. 2 ABCDE题) 视频讲解
阿史大杯茶
Codeforces算法c++数据结构
A.Dora’sSetProblemStatementDorahasasetssscontainingintegers.Inthebeginning,shewillputallintegersin[l,r][l,r][l,r]intothesetsss.Thatis,anintegerxxxisinitiallycontainedinthesetifandonlyifl≤x≤rl\leqx\leq
- 论文速读|全身人型机器人控制学习与序列接触
28BoundlessHope
人形机器人文献阅读人工智能机器人
项目地址:WoCoCo:LearningWhole-BodyHumanoidControlwithSequentialContactsWoCoCo(Whole-BodyControlwithSequentialContacts)框架通过将任务分解为多个接触阶段,简化了策略学习流程,使得RL策略能够通过任务无关的奖励和模拟到现实的设计来学习复杂的人型机器人控制任务。该框架仅需要对每个任务指定少量任务
- 【3.7】贪心算法-解分割平衡字符串
攻城狮7号
贪心算法算法c++
一、题目在一个平衡字符串中,'L'和'R'字符的数量是相同的。给你一个平衡字符串s,请你将它分割成尽可能多的平衡字符串。注意:分割得到的每个字符串都必须是平衡字符串。返回可以通过分割得到的平衡字符串的最大数量。示例1:输入:s="RLRRLLRLRL"输出:4解释:s可以分割为"RL"、"RRLL"、"RL"、"RL",每个子字符串中都包含相同数量的'L'和'R'。示例2:输入:s="RLLLLR
- 基于强化学习的制造调度智能优化决策
松间沙路hba
智能调度强化学习制造智能排程车间调度APS强化学习
获取更多资讯,赶快关注上面的公众号吧!文章目录调度状态和动作设计调度状态的设计调度动作的设计基于RL的调度算法基于值函数的RL调度算法SARSAQ-learningDQN基于策略的RL调度算法基于RL的调度应用基于RL的单机调度基于RL的并行机调度基于RL的流水车间调度基于RL的作业车间调度基于RL的其他调度RL与元启发式算法在调度中的集成应用讨论问题领域算法领域应用领域参考文献生产调度作为制造系
- 深度学习学习经验——强化学习(rl)
Linductor
深度学习学习经验深度学习学习人工智能
强化学习强化学习(ReinforcementLearning,RL)是一种机器学习方法,主要用于让智能体(agent)通过与环境的互动,逐步学习如何在不同情况下采取最佳行动,以最大化其获得的累积回报。与监督学习和无监督学习不同,强化学习并不依赖于已标注的数据集,而是通过智能体在环境中的探索和试错来学习最优策略。强化学习的主要特点:基于试错学习:强化学习中的智能体通过与环境的互动,不断尝试不同的行动
- 粒子群优化算法和强化算法的优缺点对比,以表格方式进行展示。详细解释
资源存储库
笔记笔记
粒子群优化算法(PSO)和强化学习算法(RL)是两种常用的优化和学习方法。以下是它们的优缺点对比,以表格的形式展示:特性粒子群优化算法(PSO)强化学习算法(RL)算法类型优化算法学习算法主要用途全局优化问题,寻找最优解学习和决策问题,优化策略以最大化长期奖励计算复杂度较低,通常不需要梯度信息;计算复杂度与粒子数量和迭代次数有关较高,涉及到策略网络的训练和环境交互;复杂度取决于状态空间、动作空间以
- 请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施
盛溪的猫猫
感悟大数据英语加拿大
目录请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施国际化学生生活大语言模型目前的问题卡尔加里经济地理和气候文化和活动教育交通绿色城市AVL树的旋转单右旋(LL旋转)单左旋(RR旋转)左右旋(LR旋转)右左旋(RL旋转)请介绍一下大数据主要是干什么的?大数据是一个涉及从极其庞大和复杂的数据集中提
- TinyUSB 基本使用
czy8787475
DDM单片机
由于早期时候我们产品基于STM32开发,自然而然的用了STM32的USB库,这个本身没什么问题,库也很完善,而且有官方在完善,这本来是个不错的东西,但是随着ST的缺货,问题就越来越多,比如别人的芯片可不会兼容ST的库,如果是标准设备那还好,如果像我们还做HOTPKey这样的,移植起来就相当的麻烦.一开始他们推荐我使用RL-USB,但是RL-USB始终是挂载RTX上的,至于哪一天RTX也出毛病,这就
- 【强化学习】day1 强化学习基础、马尔可夫决策过程、表格型方法
宏辉
强化学习python算法强化学习
写在最前:参加DataWhale十一月组队学习记录【教程地址】https://github.com/datawhalechina/joyrl-bookhttps://datawhalechina.github.io/easy-rl/https://linklearner.com/learn/detail/91强化学习强化学习是一种重要的机器学习方法,它使得智能体能够在环境中做出决策以达成特定目标。
- 今日arXiv最热NLP大模型论文:无需数据集,大模型可通过强化学习与实体环境高效对齐 | ICLR2024
夕小瑶
自然语言处理人工智能深度学习
引言:将大型语言模型与环境对齐的挑战虽然大语言模型(LLMs)在自然语言生成、理解等多项任务中取得了显著成就,但是在面对看起来简单的决策任务时,却常常表现不佳。这个问题的主要原因是大语言模型内嵌的知识与实际环境之间存在不对齐的问题。相比之下,强化学习(RL)能够通过试错的方法从零开始学习策略,从而确保内部嵌入知识与环境的对齐。但是,怎样将先验知识高效地融入这样的学习过程是一大挑战,为了解决这一差距
- 【RL】Bellman Optimality Equation(贝尔曼最优等式)
大白菜~
人工智能算法机器学习人工智能深度学习
Lecture3:OptimalPolicyandBellmanOptimalityEquationDefinitionofoptimalpolicystatevalue可以被用来去评估policy的好坏,如果:vπ1(s)≥vπ2(s) foralls∈Sv_{\pi_1}(s)\gev_{\pi_2}(s)\;\;\;\;\;\text{forall}s\inSvπ1(s)≥
- Codeforces CF1516D Cut
PYL2077
题解#Codeforces数论倍增线段树数据结构
题目大意给出一个长度为nnn的序列aaa,以及qqq次询问每次询问给出l,rl,rl,r,问最少需要把区间[l,r][l,r][l,r]划分成多少段,满足每段内元素的LCM等于元素的乘积这数据范围,这询问方式,一看就是DS题首先,我们考虑LCM的性质。如果一段区间内的数的LCM等于所有元素之积,那么这个区间中的数一定两两互质。我们设nxtinxt_inxti表示iii后面第一个与aia_iai不互
- Linux下安装java11(亲测)
小白想要逆袭
开发环境配置与部署linux运维服务器
1.首先下载java11yumsearchjava-11-openjdk1.1选择相应版本(本人是x86_64)(ps:如果不知道选择哪个版本可以输入arch或者uname-a命令查看系统版本信息)1.2进行下载yuminstalljava-11-openjdk.x86_64-y2.查看java11下载位置ls-rl$(whichjava)3.进行环境配置vim/etc/profile3.1使配置
- 成语故事:乘兴而来
墨殇一语
【乘兴而来】chéngxìngérlái,意思是趁着兴致来到,结果很扫兴的回去。出自于《晋书.王徽之传》:“徽之曰:‘本乘兴而来,兴尽而返,何必见安道耶?’”王徽之是东晋时的大书法家王羲之的三儿子,生性高傲,不愿受人约束,行为豪放不拘。虽说在朝做官,却常常到处闲逛,不处理官衙内的日常事务。后来,他干脆辞去官职,隐居在山阴(今绍兴),天天游山玩水,饮酒吟诗,倒也落得个自由自在。有一年冬天,鹅毛大雪纷
- 算法竞赛例题讲解:平方差 第十四届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组 C平方差
若亦_Royi
C++算法算法蓝桥杯c语言
题目描述给定LLL和RRR,问L≤x≤RL\leqx\leqRL≤x≤R中有多少个数xxx满足存在整数yyy,zzz使得x=y2−z2x=y^{2}-z^{2}x=y2−z2。输入格式输入一行包含两个整数LLL,RRR,用一个空格分隔。输出格式输出一行包含一个整数满足题目给定条件的xxx的数量。输入输出样例输入#115输出#14说明/提示【样例说明】1=12−021=1^{2}−0^{2}1=12
- 【RL】Bellman Equation (贝尔曼等式)
大白菜~
人工智能概率论人工智能算法机器学习
Lecture2:BellmanEquationStatevalue考虑grid-world的单步过程:St→AtRt+1,St+1S_t\xrightarrow[]{A_t}R_{t+1},S_{t+1}StAtRt+1,St+1ttt,t+1t+1t+1:时间戳StS_tSt:时间ttt时所处的stateAtA_tAt:在stateStS_tSt时采取的actionRt+1R_{t+1}Rt+
- 【RL】Basic Concepts in Reinforcement Learning
大白菜~
人工智能机器学习算法人工智能深度学习
Lecture1:BasicConceptsinReinforcementLearningMDP(MarkovDecisionProcess)KeyElementsofMDPSetState:ThesetofstatesS\mathcal{S}S(状态S\mathcal{S}S的集合)Action:thesetofactionsA(s)\mathcal{A}(s)A(s)isassociatedf
- AVL树
土豆有点
AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:image.png上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它
- DQN的理论研究回顾
Jay Morein
强化学习与多智能体深度学习学习
DQN的理论研究回顾1.DQN简介强化学习(RL)(Reinforcementlearning:Anintroduction,2nd,ReinforcementLearningandOptimalControl)一直是机器学习的一个重要领域,近几十年来获得了大量关注。RL关注的是通过与环境的交互进行连续决策,从而根据当前环境制定指导行动的策略,目标是实现长期回报最大化。Q-learning是RL中
- Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(八)
绝不原创的飞龙
人工智能tensorflow
原文:Hands-OnMachineLearningwithScikit-Learn,Keras,andTensorFlow译者:飞龙协议:CCBY-NC-SA4.0第十八章:强化学习强化学习(RL)是当今最激动人心的机器学习领域之一,也是最古老的之一。自上世纪50年代以来一直存在,多年来产生了许多有趣的应用,特别是在游戏(例如TD-Gammon,一个下棋程序)和机器控制方面,但很少成为头条新闻。
- PyTorch 2.2 中文官方教程(八)
绝不原创的飞龙
人工智能pytorch
训练一个玛丽奥玩游戏的RL代理原文:pytorch.org/tutorials/intermediate/mario_rl_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0注意点击这里下载完整的示例代码作者:冯元松,SurajSubramanian,王浩,郭宇章。这个教程将带你了解深度强化学习的基础知识。最后,你将实现一个能够自己玩游戏的AI马里奥(使用双深度Q网络)。虽然这个
- day18-三剑客-sed
杨丶子
16952149-298845fa3deeeae5.png三剑客——sed(增删改查)grep的参数grep过滤-i不区分大小写-v取反-n显示行号-o显示每次grep匹配到的内容-E支持扩展正则egrep-w按照单词匹配-A显示grep找出的内容下几行-B显示grep找出的内容上几行-C同时显示grep找出的内天上下几行-l过滤时只显示文件名不显示内容-R递归进行过滤grep-Rl'oldboy
- leetcode167 两数之和 II - 输入有序数组
南方乌鸦
算法leetcode数据结构
文章目录1.解法:双指针2.原题[167.两数之和II-输入有序数组](https://leetcode.cn/problems/two-sum-ii-input-array-is-sorted/)1.解法:双指针定义两个指针分别l,rl,rl,r指向数组的最小和最大元素,即左右边界,其中lll向右遍历,rrr向左遍历当l,rl,rl,r指向的两数之和等于target,就是我们要的结果。如果大于t
- H12-831_206
cn_1949
网络
206、根据本图,我们可以判断出?A.Rl的设备类型肯定不是Level-1B.R1有6条IS-IS的IPv6路由C.R1没有IS-IS的IPv6路由D.R1的GigabitEthernetO/0/1一定使能了IS-ISIPv6答案:ABD注释:这道题关注点是A选项。Level-1-2路由器和Level-2路由器才能学习到ISIS-L2路由。
- 用通俗易懂的方式讲解:一文详解大模型 RAG 模块
Python算法实战
大模型理论与实战大模型人工智能大模型langchain深度学习RAG检索增强生成多模态大模型
文章目录什么是RAG?技术交流&资料通俗易懂讲解大模型系列RAG模块化什么是模块化RAG?索引模块块优化滑动窗口从小到大元数据附加结构化组织层次化索引知识图谱文档组织预检索模块查询扩展多查询子查询CoVe查询转换重写HyDE查询路由元数据路由器/过滤器语义路由器查询构建检索模块检索模型选择稀疏检索器密集检索器检索器微调SFT(自我训练)LSR(语言模型监督检索器)RL(强化学习)Adapter后处
- Python 实战人工智能数学基础:强化学习
Python人工智能大数据
Python入门实战Java入门实战React入门实战大数据人工智能语言模型JavaPythonReact架构设计
1.背景介绍强化学习(ReinforcementLearning,简称RL)是一种人工智能技术,它旨在让计算机代理在与环境的交互中学习如何执行行动,以最大化累积奖励。强化学习的核心思想是通过试错、反馈和奖励来学习,而不是通过传统的监督学习方法,如分类器或回归器。强化学习的主要应用领域包括游戏(如AlphaGo)、自动驾驶(如TeslaAutopilot)、机器人控制(如BostonDynamics
- pytorch_car_caring 排坑记录
Debug的魔法小马
项目复现踩坑记录pytorch人工智能python
pytorch_car_caring排坑记录任务踩坑回顾简单环境问题代码版本问题症状描述解决方法cuda问题(异步问题)症状描述解决方法任务因为之前那个MPC代码跑出来的效果不理想,看了一天代码,大概看明白了,但要做改进还要有不少工作(对我来说),特别是如何对效果进行评估。正好我还要用到RL做这个任务的代码,就在github上看了下,发现有几个,打算都跑跑,看谁效果好,代码又干净,就用谁的。本菜鸡
- 【具身智能】论文系列解读-RL-ViGen & ArrayBot & USEEK
JackCrum
具身智能LLM神经网络人工智能
1.RL-ViGen:视觉泛化的强化学习基准RL-ViGen:AReinforcementLearningBenchmarkforVisualGeneralization0摘要与总结视觉强化学习(VisualRL)与高维观察相结合,一直面临着分布外泛化的长期挑战。尽管重点关注旨在解决视觉泛化问题的算法,但我们认为现有的基准测试存在问题,因为它们仅限于孤立的任务和泛化类别,从而破坏了对智能体视觉泛化
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo