- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 基于深度学习的智能图像语义分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python分类音视频机器学习sklearn
前言图像语义分割是计算机视觉领域中的一个重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。这一技术在自动驾驶、医学影像分析、机器人视觉等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像语义分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像语义分割系统的原理、实现方法以及实际应用案例。一、图像语义分割的基本概念1.1什么是图像语义分割?图
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- 【GitHub开源项目实战】DINOv2 自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析
观熵
GitHub开源项目实战github开源架构人工智能
DINOv2自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析关键词DINOv2、自监督视觉模型、ViT、多分辨率表示、语义分割、深度估计、Zero-shot、图像表示学习、OpenCLIP替代、MetaAI摘要DINOv2是由MetaAIResearch推出的下一代自监督视觉基础模型,在保持不依赖人工标签的前提下,显著提升了多任务性能,尤其在语义分割、图像分类、深度估计等下游任务中超
- python批量修改xml文件
爱上答复
xml
计算机视觉领域是当下比教热门的一个研究领域,包括目标检测,实例分割,语义分割等,不可避免会涉及到xml文件的修改,如果一两个文件的话,修改起来还算简答,但是实际情况中,远不止一个文件,且一个文件中也会包含多组属性。所以直接上代码,我习惯用pycharm编辑器来实现。importxml.dom.minidomforiinrange(0,100,5):path1="xxx"+str(i)+".xml"
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- 【语义分割专栏】3:Segnet原理篇
fouen
语义分割人工智能计算机视觉深度学习神经网络pytorch
文章目录前言背景介绍Segnet核心剖析池化索引(poolingIndices)其他细节编码器解码器的对称结构Segnet模型代码结语参考资料前言本篇文章收录于语义分割专栏,如果对语义分割领域感兴趣的,可以去看看专栏,会对经典的模型以及代码进行详细的讲解哦!其中会包含可复现的代码!带大家深入语义分割的领域,将从原理,代码深入讲解,希望大家能从中有所收获,其中很多内容都包含着自己的一些想法以及理解,
- COCO-Stuff数据集:基于YOLOv5的多类别目标检测与分割实现
YOLO实战营
深度学习YOLO实战项目YOLO目标检测人工智能无人机计算机视觉数据挖掘ui
一、引言随着计算机视觉领域的不断发展,目标检测和语义分割已经成为深度学习中的两个关键任务。COCO-Stuff是一个包含多达172个类别的大型数据集,用于训练和评估计算机视觉算法。与传统的COCO数据集不同,COCO-Stuff不仅包含常见的物体检测任务,还增加了诸如“天空”、“树木”和“路面”等场景理解任务。通过对这个数据集的处理与利用,我们可以构建一个更加丰富的目标检测与语义分割系统。本博客将
- 深度学习之路——CNN卷积神经网络详解
DeepLinkDeepLink
Ai深度学习cnn人工智能
深度学习之路——CNN卷积神经网络详解前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)作为深度学习领域的基础模型,推动了人工智能在图像、视频等方向的爆炸式发展。无论是图像分类、目标检测,还是语义分割、自动驾驶,CNN几乎无处不在。本文将带你系统了解CNN的基本原理、结构组成、常用网络、应用场景及简单代码实现。1.什么是CNN?CNN是一类专门处理类似网格结构数据(如
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- 相机--RGB相机
猿饵块
数码相机
教程RGB--深度相机--激光雷达RGB相机原理:仅捕获红(R)、绿(G)、蓝(B)三通道的彩色图像,输出2D像素矩阵,无深度信息。核心作用:2D视觉任务:目标检测、图像分类、语义分割(如YOLO、ResNet)。优点:成本低:单传感器,硬件简单(如普通手机摄像头)。缺点:无深度信息:需额外算法或传感器获取3D数据。RGB相机和单目相机定义区别名称定义角度典型输出是否包含深度信息RGB相机数据格式
- 自动驾驶可行驶区域划分综述
吃旺旺雪饼的小男孩
自动驾驶自动驾驶人工智能机器学习
可行使区域划分1.数据采集与融合的深度解析1.1传感器类型与数据特性1.2多传感器融合方法2.环境感知与特征提取的细节2.1车道线检测技术2.2道路边界识别2.3障碍物检测与区域划分3.可行驶区域划分的实现3.1语义分割与几何建模3.2动态场景处理4.路径规划与决策的细节4.1局部路径规划4.2全局路径规划5.关键技术挑战的深入分析5.1复杂场景处理5.2实时性与计算优化5.3安全与冗余设计6.典
- 深度学习在建筑物提取中的应用综述
一瞬祈望
数据集深度学习人工智能
深度学习在建筑物提取中的应用综述目录深度学习在建筑物提取中的应用综述@[toc](目录)深度学习在建筑物提取中的应用综述一、建筑物提取简介二、深度学习方法分类1.语义分割(SemanticSegmentation)2.实例分割(InstanceSegmentation)3.边界感知分割(Boundary-awareSegmentation)4.多模态融合方法三、主流建筑物提取公开数据集及分析四、数
- 使用paddleX进行目标检测详解
狸不凡
机器学习深度学习神经网络
前言使用百度开源的paddleX工具,我们可以很容易快速训练出使用我们自己标注的数据的目标检测,图像分类,实例分割,语义分割的深度网络模型,本文,主要记录如何全流程使用pddleX来训练一个简单用于检测猫狗ppyolo_tiny模型。(一)数据准备这里的图片,我们直接在百度图片上搜索“猫狗”,随机下载10张图片,存到“JPEGImages文件夹”里。(二)使用labelme标注工具进行标注(1)l
- 高精地图与SLAM:依赖停车场高精地图提供结构信息,结合SLAM(同步定位与地图构建)技术实现实时定位与导航
百态老人
人工智能机器学习算法
基于现有资料,截至2025年3月1日,高精地图与SLAM技术在停车场场景中的结合应用主要体现在以下几个方面:1.SLAM的实时定位与增量地图构建SLAM技术通过激光雷达、摄像头、IMU等传感器实时采集环境特征(如停车场内的柱子、停车线、减速带等),并利用算法(如GraphSLAM、EKF、视觉语义分割)进行匹配定位,同时构建增量式地图。这种能力使得车辆即使初次进入未知停车场,也能在无GNSS信号的
- PaddleX 使用案例
非小号
AIscikit-learnpytorch人工智能python机器学习
以下是PaddleX的典型使用案例,涵盖图像分类、目标检测和语义分割三大场景,展示其从数据准备到模型部署的全流程:案例1:图像分类-垃圾分类识别场景:识别可回收垃圾、有害垃圾、厨余垃圾和其他垃圾四类图片。步骤1:数据准备与标注#1.创建项目目录mkdirgarbage_classification&&cdgarbage_classification#2.下载示例数据集(约2000张图片,4分类)w
- 飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)
非小号
AIpaddlepaddle机器学习人工智能
以下是飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)中常用的模型、函数及工具链,结合其生态特点分类说明:一、数据采集与标注1.数据采集工具PaddleX(图像/视频场景)功能:支持图像分类、目标检测、语义分割任务的数据标注,集成标注工具(如矩形框、多边形标注)。官网工具:PaddleX数据标注工具用法:通过图形化界面或命令行启动标注工具,输出标准VOC/
- 基于RGB与多光谱图像的农田语义分割技术研究及应用
中达瑞和-高光谱·多光谱
相机
随着智慧农业的发展,精准监测农田环境与作物生长状态成为关键需求。传统遥感技术受限于光谱分辨率与成像条件,难以满足精细化管理要求。本文以无人机搭载中达瑞和S810多光谱相机为技术载体,结合深度学习算法,提出单模态与多模态融合的农田语义分割方法。通过构建专用数据集与创新网络架构,显著提升了复杂场景下的分割精度与环境适应性,为精准农业提供了高效解决方案。一、研究背景与技术挑战农业生产的数字化监测依赖高精
- 动态神经网络(Dynamic NN)在边缘设备的算力分配策略:MoE架构实战分析
学术猿之吻
神经网络架构人工智能算法量子计算深度学习机器学习
一、边缘计算场景的算力困境在NVIDIAJetsonOrinNX(64TOPSINT8)平台上部署视频分析任务时,开发者面临三重挑战:动态负载波动视频流分辨率从480p到4K实时变化,帧率波动范围20-60FPS能效约束设备功耗需控制在15W以内(被动散热)多任务耦合典型场景需同步处理:目标检测(YOLOv8s)行为识别(SlowFast)语义分割(DeepLabv3)二、MoE架构的核心技术解析
- 助力移动机器人下游任务!Mobile-Seed:联合语义分割和边缘检测
3D视觉工坊
3D视觉从入门到精通计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:语义分割,拉你入群。文末附行业细分群0.写在前面移动机器人经常需要定位语义目标和目标边缘,但大多数研究只集中在语义分割的部署上。今天笔者为大家推荐一篇开源工作,实现了语义分割和边缘检测的联合学习。下面一起来阅读一下这项工作~1.论文信息标题:Mobile-Seed:JointS
- YOLO11改进-注意力-引入通道压缩的自注意力机制CRA
一勺汤
YOLOv11模型改进系列网络YOLOYOLOv11目标检测模块魔改YOLOv11改进
在语义分割任务中存在MetaFormer架构应用局限于自注意力计算效率低的问题。为解决这些问题,提出提出CRA模块。CRA它通过将查询和键的通道维度缩减为一维,在考虑全局上下文提取的同时,显著降低了自注意力的计算成本,提高了网络的计算效率。本文将CRA与C2PSA相结合,在降低计算成本的同时提高精度。代码:https://github.com/tgf123/YOLOv8_improve/blob/
- 深度学习直接缝了别的模型,在论文中这种创新点应该如何描述呢?
深度学习入门
深度学习人工智能神经网络语音识别计算机视觉transformerAI写作
作为散养硕士,我们希望能早早发小论文,然后去实习&考公&考编,虽然知道网上大家都说缝模块来水论文,那怎样才能优雅的缝出一篇中稿率更高的论文(即如何更好地讲故事)呢?简洁版:相似领域找灵感,边试边改勇投稿。1.怎么找模块?(1)缝一些常见模块(2)相似领域比如说,最新的顶刊顶会的通用骨干网络、可以作为你的骨干网络,相似领域的模块,可以作为你其中信息融合或者其他的模块。多模态的目标检测/语义分割/目标
- 遥感深度学习——基于deeplabv3+和GID数据集(1)
全域智图
深度学习人工智能
博主最近准备进行深度学习入门,因为是做遥感方向的,经过多重考虑,算法最后选择了deeplabv3+。DeepLabV3+是由谷歌提出的一种用于图像语义分割的深度学习模型。它在DeepLabV3的基础上,加入了编码器-解码器结构,以提高分割结果的边缘细节和空间分辨率。以下是DeepLabV3+的主要特点:编码器-解码器结构:编码器部分提取图像的高层次语义特征,解码器部分逐步恢复图像的空间细节,提高分
- 【前沿 热点 顶会】CVPR 2025和目标分类、检测、分割、重识别有关的论文
平安顺遂事事如意
顶刊顶会论文合集分类数据挖掘人工智能CVPR检测分割重识别
SegEarth-OV:TowardsTraining-FreeOpen-VocabularySegmentationforRemoteSensingImages遥感图像在农业、水资源、军事、救灾等领域发挥着不可替代的作用。像素级解释是遥感影像应用的一个关键方面;但是,一个普遍的限制仍然是需要大量的手动注释。为此,我们尝试将开放词汇语义分割(OVSS)引入遥感环境中。然而,由于遥感图像对低分辨率特
- FCN改进:CBAM注意力机制增强FCN-ResNet50分割模型
听风吹等浪起
AI改进系列深度学习机器学习人工智能
1.介绍在这篇博客中,我将详细介绍一个结合了CBAM(ConvolutionalBlockAttentionModule)注意力机制的FCN-ResNet50语义分割模型的实现代码。代码概述这段代码实现了一个基于FCN-ResNet50架构的语义分割模型,并在ResNet50的各个层级后添加了CBAM注意力模块。主要包含以下几个部分:CBAM注意力模块的实现FCN-ResNet50模型的加载和修改
- 从代码学习深度学习 - 语义分割和数据集 PyTorch版
飞雪白鹿€
#计算机视觉深度学习pytorch
文章目录前言什么是语义分割?图像分割和实例分割PascalVOC2012语义分割数据集PascalVOC2012语义分割数据集介绍基本信息语义分割部分特点数据格式评价指标应用价值数据集获取使用提示辅助工具代码(`utils_for_huitu.py`)读取数据预处理数据自定义语义分割数据集类读取数据集整合所有组件总结前言大家好!欢迎来到“从代码学习深度学习”系列。今天,我们将深入探讨计算机视觉中一
- DeepLabv3+改进32:在主干网络中添加KANConv2DLayer|
AICurator
深度学习机器学习python
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介步骤一新建mmseg/models/attentions/kan_conv.py,添加如下代码:importtorchimporttorch.nnasnnfrommmcv
- 语义分割常用模型
jmxer
深度学习笔记python深度学习机器学习
VGG-Unetimporttorchimporttorch.nnasnn#定义一个通用的卷积块classConvBNReLU(nn.Sequential):def__init__(self,in_channels,out_channels,kernel_size=3,padding=1):super(ConvBNReLU,self).__init__(nn.Conv2d(in_channels,
- 基于Partial Cross Entropy的弱监督语义分割实战指南
Loving_enjoy
计算机学科论文创新点深度学习机器学习人工智能
一、问题背景:弱监督学习的挑战在计算机视觉领域,语义分割任务面临最大的挑战之一是**标注成本**。以Cityscapes数据集为例,单张图像的像素级标注需要约90分钟人工操作。这催生了弱监督学习(WeaklySupervisedLearning)的研究方向,其中partialcrossentropyloss(部分交叉熵损失)成为重要的技术手段。###弱监督的常见形式1.图像级标签(Image-le
- 深度解析语义分割评估指标:从基础到创新实践
Loving_enjoy
计算机学科论文创新点深度学习机器学习人工智能
一、为什么需要专业评估指标?在医疗影像分析中,一个3mm²的肿瘤漏检可能导致误诊;在自动驾驶场景下,5%的边界识别误差可能引发严重事故。这些真实案例揭示了语义分割评估指标的关键作用。本章将带您深入理解指标背后的数学原理与实践价值。---##二、基础指标全解析###2.1像素精度(PixelAccuracy)的陷阱```pythondefpixel_accuracy(y_true,y_pred):"
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin