好久没写博客了,上一篇博客还是去年实训写的,一是因为寒假,二是因为随着难度的加深,学一个算法的时间也变长了很多(蒟蒻专有buff)。当然,最重要的还是因为自己懒~
后面会继续努力的。(这csdn的markdown编辑器又改版了越来越难用了)
转载请注明转自bestsort的博客
好了,进入主题,说一下SG函数和SG定理吧
在竞赛中,组合游戏的题目一般有以下特点
举个例子现在有一个数0,小明小红2人每次可以轮流在当前数加 1~3,谁先凑到21谁就赢
这个描述就符合上面的条件:
比如现在数字已经为18了,那么当前操作人只要给数字+3则必胜,我们就把在此位置称为必胜点(正常操作情况下,别杠说都18偏要+2。。。。)
必胜点和必败点的性质:
- 所有的终结点都是必败点
- 从任何必胜点操作,至少有一种方式进入必败点
- 无论如何操作, 从必败点都只能进入必胜点.
游戏和的SG函数
等于各个游戏SG函数的Nim和
。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton
定理就是Sprague-Grundy
定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。
Nim和 : 各个数相异或的结果
先定义mex(minimal excludant)
运算,这是施加于一个集合的运算,表最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S S S是 x x x 后继状态的 S G SG SG函数值的集合。如 x 有三个后继状态分别为 S G ( a ) , S G ( b ) , S G ( c ) SG(a),SG(b),SG(c) SG(a),SG(b),SG(c),那么 S G ( x ) = m e x SG(x) = mex SG(x)=mex{ S G ( a SG(a SG(a, S G ( b ) SG(b) SG(b), S G ( c ) SG(c) SG(c)}。 这样 集合 S S S 的终态必然是空集,所以SG函数的终态为 S G ( x ) = 0 SG(x) = 0 SG(x)=0,当且仅当 x 为必败点P时。
取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推…
x 0 1 2 3 4 5 6 7 8…
SG[x] 0 1 0 1 2 3 2 0 1…
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
模板如下:
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1; //将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
}
}
其实不难发现,Nim游戏就是一个很典型的用SG定理解决的问题,因为Nim游戏在一堆n个石子中可以取1-n个石子,所以单独这一堆石子的SG值为 m e x ( n − 1 , n − 2 , n − 3 , . . . , n − n ) = n mex(n-1,n-2,n-3,...,n-n) = n mex(n−1,n−2,n−3,...,n−n)=n,根据SG定理,每一堆石子总数相互异或即为答案
本文是参考其他博文+自己理解,整理而来,现附上参考博文链接:
https://blog.csdn.net/luomingjun12315/article/details/45555495
https://blog.csdn.net/SM_545/article/details/77340690