py-faster-rcnn使用笔记——feature maps可视化

原工程https://github.com/meihuakaile/faster-rcnn


1.tools文件夹下新建一个vis_features.py

修改标签、模型、网络、测试图
#!/usr/bin/env python

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.

See README.md for installation instructions before running.
"""

import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse
import math

CLASSES = ('__background__','person')  #####################修改自己的标签

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'elevator15431.caffemodel')} ###################修改自己的模型


def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    #plt.draw()
def save_feature_picture(data, name, image_name=None, padsize = 1, padval = 1):
    data = data[0]
    #print "data.shape1: ", data.shape
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
    #print "padding: ", padding
    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
    #print "data.shape2: ", data.shape
    
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    #print "data.shape3: ", data.shape, n
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    #print "data.shape4: ", data.shape
    plt.figure()
    plt.imshow(data,cmap='gray')
    plt.axis('off')
    #plt.show()
    if image_name == None:
        img_path = './data/feature_picture/' 
    else:
        img_path = './data/feature_picture/' + image_name + "/"
        check_file(img_path)
    plt.savefig(img_path + name + ".jpg", dpi = 400, bbox_inches = "tight")
def check_file(path):
    if not os.path.exists(path):
        os.mkdir(path)
def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    for k, v in net.blobs.items():
        if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1:
            save_feature_picture(v.data, k.replace("/", ""), image_name)#net.blobs["conv1_1"].data, "conv1_1") 
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        choices=NETS.keys(), default='zf')    #################修改网络

    args = parser.parse_args()

    return args

def print_param(net):
    for k, v in net.blobs.items():
	print (k, v.data.shape)
    print ""
    for k, v in net.params.items():
	print (k, v[0].data.shape)  

if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    #print "prototxt: ", prototxt
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    
    #print_param(net)

    print '\n\nLoaded network {:s}'.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)

    im_names = ['8.jpg']     ####################修改测试的图片
    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(net, im_name)

    #plt.show()

2.data下新建一个feature_picture文件夹

3.根目录下执行

python ./tools/vis_features.py --net zf
4.在data/feature_picture文件夹下生成以图片名命名的文件夹,文件夹下有该测试图所有层的feature maps图

你可能感兴趣的:(faster,rcnn)