spark-shell --master yarn-client(异常已经解决)

[root@node1 ~]# spark-shell --master yarn-client
Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/09 08:36:06 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/09 08:36:11 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/09 08:36:24 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
    at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
    at org.apache.spark.SparkContext.(SparkContext.scala:509)
    at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
    at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
    at $line3.$read$$iw$$iw.(:15)
    at $line3.$read$$iw.(:42)
	at $line3.$read.(:44)
	at $line3.$read$.(:48)
	at $line3.$read$.()
	at $line3.$eval$.$print$lzycompute(:7)
	at $line3.$eval$.$print(:6)
	at $line3.$eval.$print()
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
	at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
	at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
    at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
    at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
    at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
    at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
    at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
	at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
	at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
	at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
    at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
    at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
    at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
    at org.apache.spark.repl.Main$.doMain(Main.scala:68)
    at org.apache.spark.repl.Main$.main(Main.scala:51)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/04/09 08:36:24 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/04/09 08:36:24 WARN MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
  at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
  at org.apache.spark.SparkContext.(SparkContext.scala:509)
  at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
  at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
  ... 47 elided
:14: error: not found: value spark
       import spark.implicits._
              ^
:14: error: not found: value spark
       import spark.sql
              ^
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

YARN是正常运行的。
spark-shell --master yarn-client(异常已经解决)_第1张图片

[root@node1 ~]# tail -50 /opt/hadoop-2.7.3/logs/yarn-root-resourcemanager-node1.log 
    at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
    at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
    at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
    at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
    at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
    at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
    at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
    at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
    at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
    at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Failing this attempt. Failing the application.
2017-04-09 08:36:23,640 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl: application_1491741099370_0002 State change from FINAL_SAVING to FAILED
2017-04-09 08:36:23,640 WARN org.apache.hadoop.yarn.server.resourcemanager.RMAuditLogger: USER=root OPERATION=Application Finished - Failed TARGET=RMAppManager RESULT=FAILURE  DESCRIPTION=App failed with state: FAILED   PERMISSIONS=Application application_1491741099370_0002 failed 2 times due to AM Container for appattempt_1491741099370_0002_000002 exited with  exitCode: -1000
For more detailed output, check application tracking page:http://node1:8088/cluster/app/application_1491741099370_0002Then, click on links to logs of each attempt.
Diagnostics: File file:/tmp/spark-b465ad00-e218-48b0-a85a-c00907c5015f/__spark_libs__8229958103392672487.zip does not exist
java.io.FileNotFoundException: File file:/tmp/spark-b465ad00-e218-48b0-a85a-c00907c5015f/__spark_libs__8229958103392672487.zip does not exist
    at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
    at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
    at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
    at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
    at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
    at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
    at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
    at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
    at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
    at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Failing this attempt. Failing the application.  APPID=application_1491741099370_0002
2017-04-09 08:36:23,641 INFO org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary: appId=application_1491741099370_0002,name=Spark shell,user=root,queue=default,state=FAILED,trackingUrl=http://node1:8088/cluster/app/application_1491741099370_0002,appMasterHost=N/A,startTime=1491741381902,finishTime=1491741383639,finalStatus=FAILED,memorySeconds=475,vcoreSeconds=0,preemptedAMContainers=0,preemptedNonAMContainers=0,preemptedResources=0\, vCores:0>,applicationType=SPARK
2017-04-09 08:36:23,641 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.ParentQueue: Application removed - appId: application_1491741099370_0002 user: root leaf-queue of parent: root #applications: 0
2017-04-09 08:39:12,559 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.AbstractYarnScheduler: Release request cache is cleaned up
[root@node1 ~]# 

可能是spark-shell --master yarn-client过时了,但是换成spark-shell --master yarn --deploy-mode client,依然报错。

[root@node1 ~]# spark-shell --master yarn --deploy-mode client
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/09 09:23:36 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/09 09:23:41 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/09 09:24:11 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
    at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
    at org.apache.spark.SparkContext.(SparkContext.scala:509)
    at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
    at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
    at $line3.$read$$iw$$iw.(:15)
    at $line3.$read$$iw.(:42)
	at $line3.$read.(:44)
	at $line3.$read$.(:48)
	at $line3.$read$.()
	at $line3.$eval$.$print$lzycompute(:7)
	at $line3.$eval$.$print(:6)
	at $line3.$eval.$print()
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
	at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
	at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
    at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
    at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
    at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
    at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
    at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
	at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
	at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
	at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
    at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
    at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
    at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
    at org.apache.spark.repl.Main$.doMain(Main.scala:68)
    at org.apache.spark.repl.Main$.main(Main.scala:51)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/04/09 09:24:11 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/04/09 09:24:12 WARN MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
  at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
  at org.apache.spark.SparkContext.(SparkContext.scala:509)
  at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
  at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
  ... 47 elided
:14: error: not found: value spark
       import spark.implicits._
              ^
:14: error: not found: value spark
       import spark.sql
              ^
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

百度了一下,有人说是“yarn-client模式出现的异常,暂时无解”

解决办法参考:
http://stackoverflow.com/questions/43262836/apache-spark-running-spark-shell-on-yarn-error
http://stackoverflow.com/questions/38988941/running-yarn-with-spark-not-working-with-java-8

说可能是JDK8的问题。
但是还是没有解决我的问题。



2017.4.10
这个简单的问题,我竟然耗费了2天。今天晚上才意外发现自己又犯了一个低级错误,是spark-env.sh文件中的HADOOP_CONF_DIR配置错了。
重新修改一下:
export HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop

[root@node1 conf]# spark-shell  --master yarn-client
Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/10 10:26:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/10 10:26:49 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/10 10:28:12 WARN metastore.ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.11.201:4040
Spark context available as 'sc' (master = yarn, app id = application_1491750241097_0004).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala> 

一些很低级的错误,让人哭笑不得。可见“认真”二字多么重要。

你可能感兴趣的:(Linux)