hapdoop版本:基于hadoop2.8.1,本教程是基于hadoop2.8.1上安装的hive
hive版本:apache-hive-2.3.2-bin.tar.gz
1、首先安装好mysql数据库
2、去hive官网下载hive安装包:apache-hive-2.3.2-bin.tar.gz
tar -zxvf apache-hive-2.3.2-bin.tar.gz
cd apache-hive-2.3.2-bin
[[email protected] 22:13 ~/software/apache-hive-2.3.2-bin]$ll
total 6840
-rw-r--r-- 1 chenxun staff 20798 Nov 10 00:26 LICENSE
-rw-r--r-- 1 chenxun staff 230 Nov 10 00:26 NOTICE
-rw-r--r-- 1 chenxun staff 1979 Nov 10 00:58 RELEASE_NOTES.txt
drwxr-xr-x 13 chenxun staff 442 Jan 28 01:14 bin
drwxr-xr-x 21 chenxun staff 714 Jan 25 22:08 binary-package-licenses
drwxr-xr-x 13 chenxun staff 442 Jan 28 01:47 conf
drwxr-xr-x 4 chenxun staff 136 Jan 25 22:08 examples
drwxr-xr-x 7 chenxun staff 238 Jan 25 22:08 hcatalog
drwxr-xr-x 3 chenxun staff 102 Jan 25 22:08 jdbc
drwxr-xr-x 256 chenxun staff 8704 Jan 25 22:41 lib
drwxr-xr-x 9 chenxun staff 306 Nov 22 15:31 mysql-connector-java-5.1.45
-rw-r--r--@ 1 chenxun staff 3467861 Nov 22 14:31 mysql-connector-java-5.1.45.tar.gz
drwxr-xr-x 4 chenxun staff 136 Jan 25 22:08 scripts
drwxr-xr-x 16 chenxun staff 544 Jan 28 02:03 tmp
与 Hadoop 类似,Hive 也有 3 种运行模式:
内嵌模式
将元数据保存在本地内嵌的 Derby 数据库中,这是使用 Hive 最简单的方式。但是这种方式缺点也比较明显,因为一个内嵌的 Derby 数据库每次只能访问一个数据文件,这也就意味着它不支持多会话连接。
本地模式
这种模式是将元数据保存在本地独立的数据库中(一般是 MySQL),这用就可以支持多会话和多用户连接了。
远程模式
此模式应用于 Hive 客户端较多的情况。把 MySQL 数据库独立出来,将元数据保存在远端独立的 MySQL 服务中,避免了在每个客户端都安装 MySQL 服务从而造成冗余浪费的情况。
hive的配置文件在conf目录下面:
cp hive-default.xml.template hive-site.xml
vim hive-site.xml文件:
1、把{system:java.io.tmpdir} 改成 /Users/chenxun/software/apache-hive-2.3.2-bin/tmp
/Users/chenxun/software/apache-hive-2.3.2-bin/tmp 这个路劲是自己建立一个路劲
2、把所有{system:user.name} 改成 {user.name}
3、配置mysql
找到下面的xml选项依次修改value
其中连接mysql的数据库的密码和用户都是hive
其中hivedb是创建的数据库名字,特别注意配置前后要一直
javax.jdo.option.ConnectionURL
jdbc:mysql://172.16.110.140:3306/hivedb?createDatabaseIfNotExist=true&characterEncoding=UTF-8&useSSL=false
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName
hive
javax.jdo.option.ConnectionPassword
hive
在mysql端执行如下命令授权hive用户以及密码登陆访问权限;
create database hivedb;
grant all on hivedb.* to hive@'%' identified by 'hive';
grant all on hivedb.* to hive@'localhost' identified by 'hive';
flush privileges;
下载jdbc connector:(mysql-connector-java-5.1.45-bin.jar放到lib目录下) https://dev.mysql.com/downloads/connector/j/
wget https://cdn.mysql.com//Downloads/Connector-J/mysql-connector-java-5.1.45.tar.gz
tar -zxvf mysql-connector-java-5.1.45
mv mysql-connector-java-5.1.45-bin.jar ../lib
执行初始化工作:在bin目录下执行下面的命令
schematool -initSchema -dbType mysql
然后在mysql端可以查看是否成功:
use hivedb
show tables
如果你按照本文下面的方法把t1和t2表创建成功你可以查看其中的元数据的一些信息:
mysql> select * from TBLS;
+--------+-------------+-------+------------------+---------+-----------+-------+----------+---------------+--------------------+--------------------+--------------------+
| TBL_ID | CREATE_TIME | DB_ID | LAST_ACCESS_TIME | OWNER | RETENTION | SD_ID | TBL_NAME | TBL_TYPE | VIEW_EXPANDED_TEXT | VIEW_ORIGINAL_TEXT | IS_REWRITE_ENABLED |
+--------+-------------+-------+------------------+---------+-----------+-------+----------+---------------+--------------------+--------------------+--------------------+
| 1 | 1516893558 | 1 | 0 | chenxun | 0 | 1 | t1 | MANAGED_TABLE | NULL | NULL | |
| 6 | 1516969402 | 1 | 0 | chenxun | 0 | 6 | t2 | MANAGED_TABLE | NULL | NULL | |
+--------+-------------+-------+------------------+---------+-----------+-------+----------+---------------+--------------------+--------------------+--------------------+
2 rows in set (0.00 sec)
mysql> select * from DBS;
+-------+-----------------------+-----------------------------------------------------------+--------------+------------+------------+
| DB_ID | DESC | DB_LOCATION_URI | NAME | OWNER_NAME | OWNER_TYPE |
+-------+-----------------------+-----------------------------------------------------------+--------------+------------+------------+
| 1 | Default Hive database | hdfs://localhost:9000/user/hive/warehouse | default | public | ROLE |
| 6 | NULL | hdfs://localhost:9000/user/hive/warehouse/db_hive_test.db | db_hive_test | chenxun | USER |
+-------+-----------------------+-----------------------------------------------------------+--------------+------------+------------+
2 rows in set (0.00 sec)
在hive端建立表t1和t2
hive>CREATE TABLE t1(id int); // 创建内部表t1,只有一个int类型的id字段
hive>CREATE TABLE t2(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'; // 创建内部表t2,有两个字段,它们之间通过tab分隔
其中t1.txt和t2.txt文件内容是:(在本地建立好这两个两个文件)
[root@master temp]# cat t1.txt
1
2
3
4
5
6
7
9
[root@master temp]# cat t2.txt
1 a
2 b
3 c
9 x
把t2.txt传到hadoop目录下:
[[email protected] 23:12 ~]$hadoop fs -put -f /Users/chenxun/t2.txt /
[[email protected] 23:12 ~]$hadoop fs -ls /
Found 3 items
-rw-r--r-- 1 chenxun supergroup 16 2018-01-28 23:09 /t2.txt
加载数据到hive:
hive>LOAD DATA LOCAL INPATH '/Users/chenxun/t1.txt' INTO TABLE t1; // 从本地文件加载
hive>LOAD DATA INPATH '/t2.txt' INTO TABLE t1; // 从HDFS中加载
三、启动服务hiveserver2(如果碰到问题和错误后面有解决方法)
配置hive中hiveserver2选项:
<name>hive.server2.thrift.bind.hostname>
<value>127.0.0.1<value/>
<name>hive.server2.thrift.portname>
<value>10000value>
在后台启动hiveserver2服务:
hive --service hiveserver2 &
启动beeline: 只用!connect jdbc:hive2://127.0.0.1:10000连接hive
[[email protected] 23:24 ~/software/apache-hive-2.3.2-bin/bin]$beeline
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/chenxun/software/apache-hive-2.3.2-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/chenxun/software/hadoop-2.8.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Beeline version 2.3.2 by Apache Hive
beeline> !connect jdbc:hive2://127.0.0.1:10000
Connecting to jdbc:hive2://127.0.0.1:10000
Enter username for jdbc:hive2://127.0.0.1:10000:
Enter password for jdbc:hive2://127.0.0.1:10000:
Connected to: Apache Hive (version 2.3.2)
Driver: Hive JDBC (version 2.3.2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://127.0.0.1:10000> show databases;
OK
+----------------+
| database_name |
+----------------+
| db_hive_test |
| default |
+----------------+
2 rows selected (2.367 seconds)
0: jdbc:hive2://127.0.0.1:10000> select * from t1
. . . . . . . . . . . . . . . .> ;
OK
+--------+
| t1.id |
+--------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 9 |
| NULL |
+--------+
9 rows selected (2.416 seconds)
0: jdbc:hive2://127.0.0.1:10000> select * from t2;
OK
+--------+----------+
| t2.id | t2.name |
+--------+----------+
| 1 | a |
| 2 | b |
| 3 | c |
| 9 | x |
+--------+----------+
4 rows selected (0.254 seconds)
0: jdbc:hive2://127.0.0.1:10000>
此时可以用一些简单的查询语句来查询hive,但是为了生成MapReduce作业,我们将语句写得稍微复杂些:
0: jdbc:hive2://127.0.0.1:10000> select t2.name from t1 left join t2 on t1.id = t2.id;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = chenxun_20180128232948_92e7d150-7613-43e0-9e14-fefcecdd3aff
Total jobs = 1
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/chenxun/software/apache-hive-2.3.2-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/chenxun/software/hadoop-2.8.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/chenxun/software/apache-hive-2.3.2-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/chenxun/software/hadoop-2.8.1/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
2018-01-28 23:29:55 Starting to launch local task to process map join; maximum memory = 477626368
2018-01-28 23:29:55 Starting to launch local task to process map join; maximum memory = 477626368
2018-01-28 23:29:56 Dump the side-table for tag: 1 with group count: 4 into file: file:/Users/chenxun/software/apache-hive-2.3.2-bin/tmp/chenxun/cc45ef96-0ff8-4482-aca9-8552cba0b159/hive_2018-01-28_23-29-48_650_9212450484633339980-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2018-01-28 23:29:57 Uploaded 1 File to: file:/Users/chenxun/software/apache-hive-2.3.2-bin/tmp/chenxun/cc45ef96-0ff8-4482-aca9-8552cba0b159/hive_2018-01-28_23-29-48_650_9212450484633339980-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (344 bytes)
2018-01-28 23:29:57 End of local task; Time Taken: 1.493 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
2018-01-28 23:29:56 Dump the side-table for tag: 1 with group count: 4 into file: file:/Users/chenxun/software/apache-hive-2.3.2-bin/tmp/chenxun/cc45ef96-0ff8-4482-aca9-8552cba0b159/hive_2018-01-28_23-29-48_650_9212450484633339980-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2018-01-28 23:29:57 Uploaded 1 File to: file:/Users/chenxun/software/apache-hive-2.3.2-bin/tmp/chenxun/cc45ef96-0ff8-4482-aca9-8552cba0b159/hive_2018-01-28_23-29-48_650_9212450484633339980-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (344 bytes)
2018-01-28 23:29:57 End of local task; Time Taken: 1.493 sec.
Starting Job = job_1517075946129_0001, Tracking URL = http://chen.local:8088/proxy/application_1517075946129_0001/
Kill Command = /Users/chenxun/software/hadoop-2.8.1/bin/hadoop job -kill job_1517075946129_0001
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-01-28 23:30:17,415 Stage-3 map = 0%, reduce = 0%
2018-01-28 23:30:26,953 Stage-3 map = 100%, reduce = 0%
Ended Job = job_1517075946129_0001
MapReduce Jobs Launched:
Stage-Stage-3: Map: 1 HDFS Read: 5584 HDFS Write: 218 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
+----------+
| t2.name |
+----------+
| a |
| b |
| c |
| NULL |
| NULL |
| NULL |
| NULL |
| x |
| NULL |
+----------+
9 rows selected (40.835 seconds)
0: jdbc:hive2://127.0.0.1:10000>
java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException):
User root is not allowed to impersonate anonymous 错误。
在hadoop目录etc/hadoop目录下core-site.xml中添加下面的内容赋予用户权限
hadoop.proxyuser.root.hosts
*
hadoop.proxyuser.root.groups
*
因为我的用户是root所以是hadoop.proxyuser.root.hosts和hadoop.proxyuser.root.groups
如果提示是其他用户比如说是chen 那么就要把上面内容中的root改成chen
Error: Could not open client transport with JDBC Uri: jdbc:hive2://127.0.0.1:10000: Failed to open new session:
Permission denied: user=anonymous, access=EXECUTE, inode=”/tmp”
由于Hive没有hdfs:/tmp目录的权限,赋权限即可:
hadoop fs -chmod -R 777 /tmp
beeline> !connect jdbc:hive2://127.0.0.1:10000
Connecting to jdbc:hive2://127.0.0.1:10000
Enter username for jdbc:hive2://127.0.0.1:10000:
Enter password for jdbc:hive2://127.0.0.1:10000:
18/01/28 01:59:20 [main]: WARN jdbc.HiveConnection: Failed to connect to 127.0.0.1:10000
Error: Could not open client transport with JDBC Uri: jdbc:hive2://127.0.0.1:10000: Failed to open new session: java.lang.RuntimeException: org.apache.hadoop.security.AccessControlException: Permission denied: user=anonymous, access=EXECUTE, inode="/tmp":chenxun:supergroup:drwx------
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:310)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:271)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:206)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:499)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1603)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1621)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.resolvePath(FSDirectory.java:542)
at org.apache.hadoop.hdfs.server.namenode.FSDirStatAndListingOp.getFileInfo(FSDirStatAndListingOp.java:110)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getFileInfo(FSNamesystem.java:2929)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.getFileInfo(NameNodeRpcServer.java:1106)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.getFileInfo(ClientNamenodeProtocolServerSideTranslatorPB.java:858)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:447)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:845)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:788)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1807)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2455) (state=08S01,code=0)
参考文章:
https://www.cnblogs.com/netuml/p/7841387.html
http://blog.csdn.net/roy_88/article/details/60884980
http://blog.csdn.net/lym152898/article/details/77334997
https://www.cnblogs.com/hmy-blog/p/6506417.html
https://www.cnblogs.com/garfieldcgf/p/8134452.html