hadoop版本:2.6.5
spark版本:2.3.0
hive版本:1.2.2
master主机:192.168.11.170
slave1主机:192.168.11.171
针对Hive表的sql语句会转化为MR程序,一般执行起来会比较耗时,spark sql也提供了对Hive表的支持,同时还可以降低运行时间。
pom.xml依赖如下:
4.0.0
com.tongfang.learn
learn
1.0-SNAPSHOT
learn
http://www.example.com
UTF-8
1.8
1.8
2.3.0
junit
junit
4.11
test
org.apache.spark
spark-core_2.11
${spark.core.version}
org.apache.spark
spark-sql_2.11
${spark.core.version}
mysql
mysql-connector-java
5.1.38
org.apache.spark
spark-hive_2.11
2.3.0
同时将hive-site.xml配置文件放到工程resources目录下,hive-site.xml配置如下:
hive.metastore.uris
thrift://192.168.11.170:9083
hive.server2.thrift.port
10000
javax.jdo.option.ConnectionURL
jdbc:mysql://192.168.11.170:3306/hive?createDatabaseIfNoExist=true&characterEncoding=utf8&useSSL=true&useUnicode=true&serverTimezone=UTC
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName
root
javax.jdo.option.ConnectionPassword
chenliabc
hive.metastore.warehouse.dir
/user/hive/warehouse
fs.defaultFS
hdfs://192.168.11.170:9000
hive.metastore.schema.verification
false
datanucleus.autoCreateSchema
true
datanucleus.autoStartMechanism
checked
实例代码:
import org.apache.spark.sql.SparkSession;
public class HiveTest {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("Java Spark Hive Example")
.enableHiveSupport()
.getOrCreate();
spark.sql("create table if not exists person(id int,name string, address string) row format delimited fields terminated by '|' stored as textfile");
spark.sql("show tables").show();
spark.sql("load data local inpath '/home/hadoop/software/person.txt' overwrite into table person");
spark.sql("select * from person").show();
}
}
person.txt如下:
1|tom|beijing
2|allen|shanghai
3|lucy|chengdu
在运行前需要确保hadoop集群正确启动,同时需要启动hive metastore服务。
./bin/hive --service metastore
提交spark任务:
spark-submit --class com.tongfang.learn.spark.hive.HiveTest --master yarn learn.jar
当然也可以直接在idea中直接运行,代码需要细微调整:
public class HiveTest {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.master("local[*]")
.appName("Java Spark Hive Example")
.enableHiveSupport()
.getOrCreate();
spark.sql("create table if not exists person(id int,name string, address string) row format delimited fields terminated by '|' stored as textfile");
spark.sql("show tables").show();
spark.sql("load data local inpath 'src/main/resources/person.txt' overwrite into table person");
spark.sql("select * from person").show();
}
}
在运行中可能报以下错:
Exception in thread "main" org.apache.spark.sql.AnalysisException: java.lang.RuntimeException: java.io.IOException: (null) entry in command string: null chmod 0700 C:\Users\dell\AppData\Local\Temp\c530fb25-b267-4dd2-b24d-741727a6fbf3_resources;
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:106)
at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:194)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:114)
at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:102)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anon$1.(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.analyzer(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.SessionState.analyzer$lzycompute(SessionState.scala:79)
at org.apache.spark.sql.internal.SessionState.analyzer(SessionState.scala:79)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:638)
at com.tongfang.learn.spark.hive.HiveTest.main(HiveTest.java:15)
解决方案:
1.下载hadoop windows binary包,点击这里。
2.在启动类的运行参数中设置环境变量,HADOOP_HOME=D:\winutils\hadoop-2.6.4,后面是hadoop windows 二进制包的目录。
本文讲解了spark-sql访问Hive表的代码实现与两种运行方式。