What is Cross Validation(交叉验证)

1.原理
1.1 概念
交叉验证(Cross-validation)主要用于模型训练或建模应用中,如分类预测、PCR、PLS回归建模等。在给定的样本空间中,拿出大部分样本作为训练集来训练模型,剩余的小部分样本使用刚建立的模型进行预测,并求这小部分样本的预测误差或者预测精度,同时记录它们的加和平均值。这个过程迭代K次,即K折交叉。其中,把每个样本的预测误差平方加和,称为PRESS(predicted Error Sum of Squares)。


训练集 vs. 测试集

在模式识别(pattern recognition)与机器学习(machine learning)的相关研究中,经常会将数据集(dataset)分为训练集(training set)跟测试集(testing set)这两个子集,前者用以建立模型(model),后者则用来评估该模型对未知样本进行预测时的精确度,正规的说法是泛化能力(generalization ability)。怎么将完整的数据集分为训练集跟测试集,必须遵守如下要点:
1、只有训练集才可以用在模型的训练过程中,测试集则必须在模型完成之后才被用来评估模型优劣的依据。
2、训练集中样本数量必须够多,一般至少大于总样本数的50%。
3、两组子集必须从完整集合中均匀取样。
        其中最后一点特别重要,均匀取样的目的是希望减少训练集/测试集与完整集合之间的偏差(bias),但却也不易做到。一般的作法是随机取样,当样本数量足够时,便可达到均匀取样的效果,然而随机也正是此作法的盲点,也是经常是可以在数据上做手脚的地方。举例来说,当辨识率不理想时,便重新取样一组训练集/测试集,直到测试集的识别率满意为止,但严格来说这样便算是作弊了。


1.2 目的
用交叉验证的目的是为了得到可靠稳定的模型。在分类,建立PC 或PLS模型时,一个很重要的因素是取多少个主成分的问题。用cross validation校验每个主成分下的PRESS值,选择PRESS值小的主成分数。或PRESS值不再变小时的主成分数。


常用的精度测试方法主要是交叉验证,例如10折交叉验证(10-fold cross validation),将数据集分成十份,轮流将其中9份做训练1份做验证,10次的结果的均值作为对算法精度的估计,一般还需要进行多次10折交叉验证求均值,例如:10次10折交叉验证,以求更精确一点。交叉验证有时也称为交叉比对,如:10折交叉比对


1.3 常见的交叉验证形式:


Holdout 验证

方法:将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.。Hold-OutMethod相对于K-fold Cross Validation 又称Double cross-validation ,或相对K-CV称 2-fold cross-validation(2-CV)


一般来说,Holdout 验证并非一种交叉验证,因为数据并没有交叉使用。 随机从最初的样本中选出部分,形成交叉验证数据,而剩余的就当做训练数据。 一般来说,少于原本样本三分之一的数据被选做验证数据。

优点:好处的处理简单,只需随机把原始数据分为两组即可 

缺点:严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.(主要原因是 训练集样本数太少,通常不足以代表母体样本的分布,导致 test 阶段辨识率容易出现明显落差。此外,2-CV 中一分为二的分子集方法的变异度大,往往无法达到「实验过程必须可以被复制」的要求。)


K-fold cross-validation

K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次,10折交叉验证是最常用的。

优点:K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性. 

缺点:K值选取上


留一验证

正如名称所建议, 留一验证(LOOCV)意指只使用原本样本中的一项来当做验证资料, 而剩余的则留下来当做训练资料。 这个步骤一直持续到每个样本都被当做一次验证资料。 事实上,这等同于 K-fold 交叉验证是一样的,其中K为原本样本个数。 在某些情况下是存在有效率的演算法,如使用kernel regression 和Tikhonov regularization。


2.深入
使用交叉验证方法的目的主要有3个:


(1)从有限的学习数据中获取尽可能多的有效信息; 

(2)交叉验证从多个方向开始学习样本的,可以有效的避免陷入局部最小值; 

(3)可以在一定程度上避免过拟合问题。


采用交叉验证方法时需要将学习数据样本分为两部分:训练数据样本和验证数据样本。并且为了得到更好的学习效果,无论训练样本还是验证样本都要尽可能参与学习。一般选取10重交叉验证即可达到好的学习效果。下面在上述原则基础上设计算法,主要描述下算法步骤,如下所示。

Algorithm

Step1:  将学习样本空间 C 分为大小相等的 K 份 

Step2:  for i = 1 to K :

取第i份作为测试集

		for j = 1 to K:

			if i != j:

				将第j份加到训练集中,作为训练集的一部分

			end if

		end for

	end for

Step3:  for i in (K-1训练集):

		训练第i个训练集,得到一个分类模型

		使用该模型在第N个数据集上测试,计算并保存模型评估指标

	end for

Step4:  计算模型的平均性能

Step5:  用这K个模型在最终验证集的分类准确率平均值作为此K-CV下分类器的性能指标.



3、使用Cross-Validation时常犯的错误
        由于实验室许多研究都有用到 evolutionary algorithms(EA)与 classifiers,所使用的 fitness function 中通常都有用到 classifier 的辨识率,然而把cross-validation 用错的案例还不少。前面说过,只有 training data 才可以用于 model 的建构,所以只有 training data 的辨识率才可以用在 fitness function 中。而 EA 是训练过程用来调整 model 最佳参数的方法,所以只有在 EA结束演化后,model 参数已经固定了,这时候才可以使用 test data。那 EA 跟 cross-validation 要如何搭配呢?Cross-validation 的本质是用来估测(estimate)某个 classification method 对一组 dataset 的 generalization error,不是用来设计 classifier 的方法,所以 cross-validation 不能用在 EA的 fitness function 中,因为与 fitness function 有关的样本都属于 training set,那试问哪些样本才是 test set 呢?如果某个 fitness function 中用了cross-validation 的 training 或 test 辨识率,那么这样的实验方法已经不能称为 cross-validation 了。 
        EA 与 k-CV 正确的搭配方法,是将 dataset 分成 k 等份的 subsets 后,每次取 1份 subset 作为 test set,其余 k-1 份作为 training set,并且将该组 training set 套用到 EA 的 fitness function 计算中(至于该 training set 如何进一步利用则没有限制)。因此,正确的 k-CV 会进行共 k 次的 EA 演化,建立 k 个classifiers。而 k-CV 的 test 辨识率,则是 k 组 test sets 对应到 EA 训练所得的 k 个 classifiers 辨识率之平均值。

你可能感兴趣的:(机器学习)