Java源码阅读之HashMap

Summary:

  • public class HashMap extends AbstractMap implements Map, Cloneable, Serializable
  • 桶数:预计元素个数的75%-150%;桶数设为一个素数,以防集聚,因为素数的分布似乎毫无规律, 总的来看很稀疏,偶尔有集聚现象;标准库桶数为2的幂,默认16
  • 填装因子:决定何时对散列表进行再散列;默认使用双倍的桶数自动进行再散列,标准库默认使用0.75;
  • 每个列表称为一个桶,列表Node数组实现;而对于桶中的元素可能是链表结构也可能是红黑树结构,根据桶中拥有的元素不同而定

Fields:

属于类的域

// aka 16;默认容量大小;容量必须是2的幂,
// why? 因为每个元素应该放置到哪个桶由hash(key)&n-1决定的;
//如果n是2的幂,那么n-1必然是一串11111..111;这样我们利用&运算就达到了取余的效果;这样效率是很高的
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
//Node数组的最大容量int是32位的,最高位是符号位,所以得到了下面的最大值
static final int MAXIMUM_CAPACITY = 1 << 30; 
//填装因子
static final float DEFAULT_LOAD_FACTOR = 0.75f; 

//当桶中数据大于该值,则需要考虑将该桶中的元素转换成TreeNode
static final int TREEIFY_THRESHOLD = 8;
//当红黑树中的元素小于该值时,则将红黑树中的数据转换成普通链表形式存储,TreeNode的split中会用到
static final int UNTREEIFY_THRESHOLD = 6;
//将桶中的数据转换为TreeNode的时候,node数组所要求的最小的长度值
//MIN_TREEIFY_CAPACITY不应该小于4 * TREEIFY_THRESHOLD;为何是4倍暂时没想明白?
static final int MIN_TREEIFY_CAPACITY = 64;

属于对象的域

//HashMap对象维护的Node数组
transient Node[] table; 
transient Set> entrySet;//在entrySet方法中会用到
transient int size; //当前存储数据大小,而非node数组的长度
transient int modCount; //修改次数 在迭代器中会被使用
int threshold; //桶数的警戒值=桶的最大值*loadFactor
final float loadFactor; //填装因子

Constructor:

//默认初始容量16,载入因子0.75
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//初始容量initialCapacity,使用方法tableSizeFor进行设置,载入因子loadFactor
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);//tableSizeFor是确保了容量是2的幂,猜测数据结构跟树有关
}

tableSizeFor()

//将cap自动地转换为不大于n的一个最近的2的幂
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8; //到这里整数的高八位或者第八位应该全为1,或者全为0
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

size():

public int size() {
        return size;
}

isEmpty():

public boolean isEmpty() {
        return size == 0;
}

hash():

//获取当前对象key的hash值
//返回的值受对象的hashCode()方法影响
static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

put(K key,V value):

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
}

putVal():

//内部调用的方法有:
//afterNodeInsertion(evict);插入的数据是所在桶的第一个数据(当前类不实现)
//afterNodeAccess(e);对新插入点进行访问过后(当前类不实现)
//resize();当前HashMap对象的数据大于threshold,或第一次初始化Node[] table的时候
//treeifyBin();插入的桶是普通Node,且插入后的元素大于成树的最小门限,即TREEIFY_THRESHOLD
//TreeNode.putTreeVal();插入的桶是TreeNode的时候
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
        Node[] tab; 
        Node p;
        int n, i;
        //n存储tab的大小,等于桶数
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;  
        //桶数-1&key的hash值就是对应的散列值,数组的下标;下标结果不会大于n-1
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);//桶中还未存入数据,则直接创建一个Node即可
         //当前桶中已经存有数据了
        else {
            Node e; 
            K k;
            //p指向当前的桶
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value); //节点是TreeNode类型,则调用该类型的方法存入数据
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash); //参数为对象的node数组和插入数据的hash值
                        break;
                    }//end of if
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }//end of for;
            }//end of else(inner)
            //上面运行的结果就是e指向的Node其key等于要插入的数据的key
            if (e != null) { // existing mapping for key 更新旧值
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null) //如果onlyIfAbsent是true则不更新旧值,默认是false
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }//end of if
        }end of else(outside)
        ++modCount;
        if (++size > threshold)
            resize();//如果当前存储数据大于大于门限值,需要扩容
        afterNodeInsertion(evict);
        return null;
}
回调方法:
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node p) { }

扩容:resize()

//Initializes or doubles table size
//对原来的node数组进行扩容
//新建的node数组其大小等于原数组大小的两倍,相应的门限也变成原来的两倍;
//oldnode[j]中的数据会被分到newnode[j]或者newnode[j+oldnode.length]中根据数据的hash值具体确定
final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length; //原表的桶数
        int oldThr = threshold; //原表的桶数的警戒值,这里自然是小于桶数的
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }//对于这种情况已经无能为力,只能扩大下桶的警戒值
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }//end of if
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }//end of else
        //上面的代码对newCap和newThr进行了初始化;大多数情况是将原桶数和原桶的门限扩大两倍
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }//end of if
        threshold = newThr;//更新对象中的threshold域
        @SuppressWarnings({"rawtypes","unchecked"})
        Node[] newTab = (Node[])new Node[newCap]; //创建一个新的大小为newCap的Node数组
        table = newTab; //更新当前对象中的table域
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);// 调用TreeNode.split方法进行对原桶中的数据进行分离
                    else { // preserve order
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                //以前的索引是hash跟oldCap-1相与;这一次则是与oldCap相与
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }//落在0~oldCap-1之间的数
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }//落在oldCap~newCap-1之间的数
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }//end of else
                }end of if ((e = oldTab[j]) != null)
            }end of for
        }end of if (oldTab != null) 如果oldTab为null证明是第一次调用resize()只要创建一个Node数组即可
        return newTab;
}

treeifyBin():

final void treeifyBin(Node[] tab, int hash) {
        int n, index; 
        Node e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)//如果当前的node数组的长度小于MIN_TREEIFY_CAPACITY
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode hd = null, tl = null;
            do {
                TreeNode p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
}

TreeNode replacementTreeNode(Node p, Node next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
}

get(Object key):

public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
}
public V get(Object key) { 
        Node e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//first = tab[(n-1)&hash]???
//TreeNode????
final Node getNode(int hash, Object key) {
        Node[] tab; 
        Node first, e; 
        int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash &&  ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode)first).getTreeNode(hash, key); //桶中的元素如果红黑树,则利用红黑树的方式查找
                do {
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) //如果桶中的元素只是普通的链表,则从头往后一个一个的进行查找,最坏O(n)
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
}

remove():

public V remove(Object key) {
        Node e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
}
final Node removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
        Node[] tab; 
        Node p; 
        int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node node = null, e; 
            K k; 
            V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }//end of else
            }end of else if
            //上面的代码用于寻找要删除的Node由node指向;操作与get(Object key)类似
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }//end of if(inner) 
        }//end of if(outer)
        return null;
}

clear():

public void clear() {
        Node[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
}

containsValue():

//这里没有将节点分为TreeNode还是普通Node;
//全部看成普通Node;从第一个桶的第一个元素一路next去比较;
public boolean containsValue(Object value) {
        Node[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
}
newNode():
Node newNode(int hash, K key, V value, Node next) {
        return new Node<>(hash, key, value, next);
}
newTreeNode():
TreeNode newTreeNode(int hash, K key, V value, Node next) {
        return new TreeNode<>(hash, key, value, next);
}

内部类Node
static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

内部类TreeNode
//注意LinkedHashMap.Entry extends HashMap.Node;TreeNode是Node的子类
//红黑树节点
static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // red-black tree links
        TreeNode left;
        TreeNode right;
        TreeNode prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }
        /**
         * Returns root of tree containing this node.
         */
        final TreeNode root() {
            for (TreeNode r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static  void moveRootToFront(Node[] tab, TreeNode root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode first = (TreeNode)tab[index];
                if (root != first) {
                    Node rn;
                    tab[index] = root;
                    TreeNode rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode find(int h, Object k, Class kc) {
            TreeNode p = this;
            do {
                int ph, dir; K pk;
                TreeNode pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }
        /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node[] tab) {
            TreeNode root = null;
            for (TreeNode x = this, next; x != null; x = next) {
                next = (TreeNode)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class kc = null;
                    for (TreeNode p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }//end of if
                    }//end of for
                }'//end of else
            }end of for
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node untreeify(HashMap map) {
            Node hd = null, tl = null;
            for (Node q = this; q != null; q = q.next) {
                Node p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode putTreeVal(HashMap map, Node[] tab,
                                       int h, K k, V v) {
            Class kc = null;
            boolean searched = false;
            TreeNode root = (parent != null) ? root() : this;
            for (TreeNode p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node xpn = xp.next;
                    TreeNode x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap map, Node[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode first = (TreeNode)tab[index], root = first, rl;
            TreeNode succ = (TreeNode)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode sr = s.right;
                TreeNode pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap map, Node[] tab, int index, int bit) {
            TreeNode b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode loHead = null, loTail = null;
            TreeNode hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode e = b, next; e != null; e = next) {
                next = (TreeNode)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static  TreeNode rotateLeft(TreeNode root,
                                              TreeNode p) {
            TreeNode r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static  TreeNode rotateRight(TreeNode root,
                                               TreeNode p) {
            TreeNode l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static  TreeNode balanceInsertion(TreeNode root,
                                                    TreeNode x) {
            x.red = true;
            for (TreeNode xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static  TreeNode balanceDeletion(TreeNode root,
                                                   TreeNode x) {
            for (TreeNode xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static  boolean checkInvariants(TreeNode t) {
            TreeNode tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }



















你可能感兴趣的:(Java源码)