- 使用 Deepseek Zero Coding Experience 创建类似飞扬的小鸟游戏
知识大胖
NVIDIAGPU和大语言模型开发教程游戏deepseekollamajanuspro
简介Flappybird在苹果商店推出后,每天大约能赚5000美元,但后来被苹果故意下架。现在我正尝试使用Deepseek制作这样一款游戏。技术在不断变化,编码知识也在不断变化,只需修改代码即可获得结果。让我们在Deepseek上试试这款游戏:推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列之使用NVIDIAIsaacSim和ROS2的命令行控
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- OpenWebUI系列之 如何通过docker自动将其更新到OpenWebUI最新版本
知识大胖
NVIDIAGPU和大语言模型开发教程dockerllmopenwebui
实战需求OpenWebUI是一个可扩展、功能丰富且用户友好的自托管WebUI,旨在完全离线运行。它支持各种LLM运行器,包括Ollama和OpenAI兼容API。如何通过docker自动将其更新到OpenWebUI最新版本?系列文章《OpenWebUI系列之如何通过docker更新到OpenWebUI的最新版本》权重0,本地类、opewebui类《OpenWebUI系列之如何通过docker自动将
- 用Python做数据分析之数据统计
学掌门
Python数据分析大数据python数据分析人工智能
接下来说说数据统计部分,这里主要介绍数据采样,标准差,协方差和相关系数的使用方法。1、数据采样Excel的数据分析功能中提供了数据抽样的功能,如下图所示。Python通过sample函数完成数据采样。2、数据抽样Sample是进行数据采样的函数,设置n的数量就可以了。函数自动返回参与的结果。1#简单的数据采样2df_inner.sample(n=3)3、简单随机采样Weights参数是采样的权重,
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- 进制转换原理与实现详解
一、进制系统基础概念1.1位权计数法原理十进制系统:采用10ⁿ位权体系,每个数字的位置代表不同的权重。例如数字"365"表示为:3×10²+6×10¹+5×10⁰=300+60+5=365通用r进制系统:遵循rⁿ位权表达方式。对于r进制数"dₙdₙ₋₁...d₁d₀",其十进制值为:∑dᵢ×rⁱ(i=0到n)。例如:二进制1011=1×2³+0×2²+1×2¹+1×2⁰=11八进制745=7×8²
- 美团辟谣「30万本科生送外卖」;微软裁员再引争议,员工未归属股票被全部回收;传OpenAI“开放权重模型”最快下周上线|极客头条
极客日报
microsoft
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。(投稿或寻求报道:
[email protected])整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!美团辟谣「30万本科生送外卖」传字节跳动旗下沐瞳科技已收购杭州心光流美2025福布斯中国最佳CEO榜单揭晓:马化腾、雷军、王传福排名前三武汉大学集成电路学
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 深度学习 最简单的神经网络 线性回归网络
用最简单的线性模型讲清神经网络训练全流程,让你5分钟看懂AI是怎么学会预测的1真实神经元结构真实神经元包括:树突接收其他神经元传来的电信号(输入)。细胞核负责整合输入信号并产生动作电位。轴突传导动作电位到下一个神经元。突触释放神经递质,将信号传递给下一个神经元的树突。2线性回归神经网络原理(与神经元对比)假设输入是x_1,x_2,x_3x\_1,x\_2,x\_3x_1,x_2,x_3,权重是w_
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- python使用同一张图片的不同部分测试 LoFTR 匹配特征点
susu1083018911
python
使用同一张图片的不同部分测试LoFTR匹配的完整代码,用于验证模型是否正常工作。如果模型和代码正确,同一图片的裁剪区域应该能匹配到大量特征点:https://drive.google.com/drive/folders/1DOcOPZb3-5cWxLqn256AhwUVjBPifhuf下载权重importcv2importtorchimportkorniaasKimportmatplotlib.p
- 牛市来临之际,如何用期权抢占反弹先机?
期权汇小韩
金融
牛市来临之际,如何实现用更低的资金成本抢占反弹先机?期权就是一种花小钱办大事的强大工具!尐程序:期权汇1、策略详解若投资者认为短期行情有可能会爆发,相较于追涨个股,买入相关的认购期权是一种更为高效的看涨方式。以银行股为例,考虑到大盘代表指数上证50ETF中银行股权重占比超35%,买入上证50ETF期权能有效捕捉银行板块及指数权重股走强的红利,该策略只需投入小额权利金成本,即可博弈指数权重走强带来的
- Fuse.js 模糊匹配库用法总结
超级土豆粉
javascript开发语言ecmascript
目录Fuse.js模糊匹配库用法总结简介安装与引入基本用法1.对字符串数组进行模糊搜索2.对对象数组进行模糊搜索主要配置项(Options)进阶用法1.权重搜索(WeightedSearch)2.嵌套搜索(NestedSearch)3.扩展搜索(ExtendedSearch)4.逻辑查询(LogicalQueryOperators)5.索引优化(Indexing)6.全局配置(GlobalConf
- 「源力觉醒 创作者计划」_以FastDeploy为例部署ERNIE-4.5-21B大模型全流程实践
cooldream2009
大模型基础AI技术文心大模型FastDeploy
目录前言1环境准备与依赖安装1.1硬件要求1.2Python环境与pip升级2下载ERNIE-4.5模型权重2.1安装HuggingFaceCLI工具2.2设置国内镜像加速(可选)2.3下载模型文件3安装FastDeploy与Paddle推理引擎3.1安装PaddlePaddle-GPU版本3.2安装FastDeploy-GPU4启动ERNIE-4.5本地服务4.1启动OpenAI兼容API服务4
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备端内联函数,用于高效地计算两个uint类型值的带权重平均值。该函数返回两个无符号整数a和b的加权平均值,权重为:return(a*3+b)/4;函数原型__device____forceinline__uintc
- Tansformer的Multi-Head Attention组件
数字化与智能化
大模型基础Transformer框架transformer多头注意力机制
一、Transformer的注意力机制Transformer的注意力机制是对传统序列建模方法的颠覆性创新。它通过全局并行的关联计算解决了RNN的效率与长距离依赖瓶颈,通过动态权重和多头设计增强了模型对复杂信息的捕捉能力,最终成为现代人工智能的核心技术基石。其意义不仅在于提升了模型性能,更在于提供了一种“计算关联”的通用思路,推动了人工智能向更高效、更通用的方向发展。在Transformer之前,循
- 【论文复现】利用生成式AI进行选股和分配权重
代码能跑就行管它可读性
人工智能chatgpt
2023年8月,OleksandrRomanko等发表题为《ChatGPT-basedInvestmentPortfolioSelection》(基于ChatGPT进行投资组合选择)的论文。论文探讨了生成式AI模型(如ChatGPT)在投资组合选择中的应用潜力。由于生成式AI模型可能产生幻觉,因此需要谨慎验证和验证其输出。本文采用另一种方法,利用ChatGPT从S&P500市场指数中获取潜在有吸引
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 深入解析 SAE 训练输出文件:结构与意义
阿正的梦工坊
LLM语言模型人工智能自然语言处理
深入解析SAE训练输出文件:结构与意义在利用SAELens框架进行稀疏自编码器(SparseAutoencoder,SAE)训练时,训练完成后会生成一组关键文件,这些文件记录了模型的权重、状态以及相关信息。本文将详细解析路径SAELens/tutorials/checkpoints/n78ngo5e/final_122880000下生成的四个文件:activations_store_state.s
- Python 训练营打卡 Day 50
2401_86382089
Python打卡python
预训练模型CBAM注意力现在我们思考下,是否可以对于预训练模型增加模块来优化其效果,这里我们会遇到一个问题:预训练模型的结构和权重是固定的,如果修改其中的模型结构,是否会大幅影响其性能。其次是训练的时候如何训练才可以更好的避免破坏原有的特征提取器的参数。所以今天的内容,我们需要回答2个问题。resnet18中如何插入cbam模块?采用什么样的预训练策略,能够更好的提高效率?可以很明显的想到,如果是
- 深入解析BEM架构:架构级全局样式管理方案
neon1204
前端方案分析和实践架构前端csswebpack
深入解析BEM架构:架构级全局样式管理方案在前端开发领域,CSS架构一直是影响项目可维护性和可扩展性的关键因素。随着SPA应用的普及,传统CSS管理方式的缺陷在开发中暴露出明显的问题:样式冲突、选择器权重失控、命名污染等,从代码质量和开发效率角度出发可以借鉴一些优秀的案例。各种组件库(element、antd、vant…)使用多了能发现它们的样式就是采取的BEM(Block,Element,Mod
- 算法分析与设计实验2:实现克鲁斯卡尔算法和prim算法
表白墙上别挂我
算法笔记经验分享
实验原理(一)克鲁斯卡尔算法:一种用于求解最小生成树问题的贪心算法,该算法的基本思想是按照边的权重从小到大排序,然后依次选择边,并加入生成树中,同时确保不会形成环路,直到生成树包含图中所有的顶点为止。具体步骤:边的排序:将所有边按照权重从小到大排序。初始化:创建一个空的生成树(可以是一个空的图结构),以及一个用于记录每个顶点所属集合(或称为连通分量)的数据结构(例如并查集)。边的选择:依次选择排序
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- torch.nn.init.kaiming_normal_
参考(5条消息)PytorchKaiming初始化(Initialization)中fan_in和fan_out的区别/应用场景_bxdzyhx的博客-CSDN博客torch.nn.init.kaiming_normal_使用正态分布对输入张量进行赋值fan_in如果权重是通过线性层(卷积或全连接)隐性确定的,则需设置mode=fan_in。例子:importtorchlinear_layer=t
- 202505架构师论文《论静态负载均衡策略设计和应用》
文琪小站
系统架构师软考论文负载均衡运维软考论文
软件架构师论文范文系列摘要在当今高度依赖信息技术的时代,构建高性能、高可用的分布式系统已成为必然趋势。负载均衡作为分布式系统中的关键技术,旨在将请求或数据有效地分发到多个处理单元,以优化资源利用率、提升系统吞吐量并确保服务的稳定运行。本文深入探讨了静态负载均衡策略的设计原理、技术特点及其在实际项目中的应用。首先,概述了负载均衡的整体概念及静态策略的分类,重点介绍了基于哈希、轮询和权重等静态算法的实
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它