场景:计算训练特征和目标之间的相关系数,用于判断是否加入训练。
参考代码:
# -*- coding: utf-8 -*-
import pandas as pd
import time
from sklearn import tree
import numpy as np
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from scipy.stats import pearsonr
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
def main():
#加载标记数据
label_ds=pd.read_csv(r"link_train_0726.txt",sep='\t',encoding='utf8',\
names=['link_id','length','width','link_class','start_date','week','time_interval','time_slot','travel_time',\
'avg_travel_time','sd_travel_time','inlinks_num','outlinks_num'])
label_ds["link_id"] = label_ds["link_id"].astype("string")
label_ds["length"] = label_ds["length"].astype("int")
label_ds["width"] = label_ds["width"].astype("int")
label_ds["link_class"] = label_ds["link_class"].astype("int")
label_ds["start_date"] = label_ds["start_date"].astype("string")
label_ds["week"] = label_ds["week"].astype("int")
label_ds["time_interval"] = label_ds["time_interval"].astype("string")
label_ds["time_slot"] = label_ds["time_slot"].astype("int")
label_ds["travel_time"] = label_ds["travel_time"].astype("float")
label_ds["avg_travel_time"] = label_ds["avg_travel_time"].astype("float")
label_ds["sd_travel_time"] = label_ds["sd_travel_time"].astype("float")
label_ds["inlinks_num"] = label_ds["inlinks_num"].astype("int")
label_ds["outlinks_num"] = label_ds["outlinks_num"].astype("int")
#加载预测数据
unlabel_ds=pd.read_csv(r"link_test_0726.txt",sep='\t',encoding='utf8',\
names=['link_id','length','width','link_class','start_date','week','time_interval','time_slot',\
'avg_travel_time','sd_travel_time','inlinks_num','outlinks_num'])
unlabel_ds["link_id"] = unlabel_ds["link_id"].astype("string")
unlabel_ds["length"] = unlabel_ds["length"].astype("int")
unlabel_ds["width"] = unlabel_ds["width"].astype("int")
unlabel_ds["link_class"] = unlabel_ds["link_class"].astype("int")
unlabel_ds["start_date"] = unlabel_ds["start_date"].astype("string")
unlabel_ds["week"] = unlabel_ds["week"].astype("int")
unlabel_ds["time_interval"] = unlabel_ds["time_interval"].astype("string")
unlabel_ds["time_slot"] = unlabel_ds["time_slot"].astype("int")
unlabel_ds["avg_travel_time"] = unlabel_ds["avg_travel_time"].astype("float")
unlabel_ds["sd_travel_time"] = unlabel_ds["sd_travel_time"].astype("float")
unlabel_ds["inlinks_num"] = unlabel_ds["inlinks_num"].astype("int")
unlabel_ds["outlinks_num"] = unlabel_ds["outlinks_num"].astype("int")
#提取训练集、验证集、测试集
train_df=label_ds.loc[(pd.to_datetime(label_ds["start_date"])<'2016-06-01')]#训练集
print "训练集,有", train_df.shape[0], "行", train_df.shape[1], "列"
valid_df=label_ds.loc[(pd.to_datetime(label_ds["start_date"])>='2016-06-01')]#验证集train_df.sample(frac=0.2)
print "验证集,有", valid_df.shape[0], "行", valid_df.shape[1], "列"
test_df=unlabel_ds#测试集
print "测试集,有", test_df.shape[0], "行", test_df.shape[1], "列"
#特征选择
p_X=train_df['outlinks_num']#训练属性
p_Y=train_df['travel_time']#目标属性
p_value=pearsonr(p_X,p_Y)
print p_value
#选择相关性最强的k个特征参与训练
#k_feature = f_regression(p_X,p_Y)
#k_fearture=SelectKBest(lambda X, Y: np.array(map(lambda x:pearsonr(x, Y), X.T)).T, k=9).fit_transform(p_X, p_Y)
#print k_fearture
#模型训练
train_X=train_df[['length','width','link_class','week','time_slot','avg_travel_time']]
train_y = train_df['travel_time']#标记
model_lr=LinearRegression()#tree.DecisionTreeRegressor()
model_lr.fit(train_X, train_y)
#模型验证
valid_X=valid_df[['length','width','link_class','week','time_slot','avg_travel_time']]
valid_y=valid_df['travel_time']
pre_valid_y=model_lr.predict(valid_X)
abs_y=abs(pre_valid_y-valid_y)
abs_error=abs_y.sum()#求和
#abs_error=sum(list(abs_y))#求和
print "mape:",abs_error/valid_df.shape[0]
print "RMSE:",np.sqrt(metrics.mean_squared_error(valid_y, pre_valid_y))#均方差,模型评估
#模型预测
test_X = test_df[['length','width','link_class','week','time_slot','avg_travel_time']]
test_info = test_df[['link_id','start_date','time_interval']]
test_X=test_X.fillna(0)#空值替换为0
test_y=model_lr.predict(test_X)
pre_test_y=pd.DataFrame(test_y,columns=['travel_time'])
outset=test_info.join(pre_test_y,how='left')#输出结果
#outset["travel_time"]=outset["travel_time"].apply(lambda x: '{0:.3f}'.format(x))
outset.to_csv('outit.txt',sep='#',index=False,header=None)#输出预测数据
#执行
if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
scikit-learn库中:f_regression和SelectKBest用于选择最佳特征训练,可以批量给出前k个特征。