- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- Faster R-CNN原理详解以及Pytorch实现模型训练与推理
阿_旭
深度学习实战cnnpytorch人工智能FasterRCNN
《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于深度学习的行人跌倒检测系统】9.【基于深度学习的PCB板缺陷检测系统
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 【基于国产RK3588-NPU的yolov5的AI智能盒子】
贝壳里的沙
人工智能
基于国产RK3588-NPU的yolov5的AI智能盒子背景识别效果区别Python版本目标识别实现cmake(c/c++)版本实现背景前面写了一篇关于基YOLOV5实现的AI智能盒子的实现方案,这篇文章着重讲了如何在NVIDIA-英伟达芯片上如何实现目标识别的过程(可能已经被官方屏蔽了)。但是因为中美芯片限制问题,很多朋友联系到我,跟我提了是否可以基于国产芯片来迁移yolov5框架平台?国产芯片
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 基于RK3588的AI摄像头应用解决方案
浙江启扬智能科技有限公司
linuxARM嵌入式开发嵌入式硬件
随着人工智能(AI)技术的快速发展,越来越多的视频监控系统开始直接在摄像头上部署AI分析,视频监控从早期的图像记录发展到如今具备AI运算能力和算法,可进行目标识别、行为分析以及事件反馈,实现从被动记录到主动预警的转变。目前有三种算力部署方式:AI分析部署在云端、AI分析部署在边缘、AI分析部署在摄像头,也就是我们常说的云,边,端。但越来越多的摄像头本身就集成了AI分析能力,这一趋势的出现存在多方面
- 拦阻式干扰matlab,16号数据链干扰战术应用研究
weixin_39932330
拦阻式干扰matlab
1引言16号数据链是当前西方国家用于C4ISR系统的主要战术数据链。相对于Link-11来说,它在抗干扰、保密、数据吞吐量、信息交换量、终端体积、导航、精确定位和目标识别等方面都有明显的进步,16号数据链采用时分多址(TDMA)方式组网,不再需要网络控制站,网络成为一个无关键节点的系统;为了提高通信容量,16号数据链采用栈网和多重网操作,同一时隙被分配给多个具有特定功能的网络参与群(NPG),通过
- yolo目标检测项目
m0_75047393
YOLO目标检测人工智能
一、前言(一)、什么是目标检测目标检测是指在图像或视频中准确地识别和定位出现的特定目标物体的任务。目标检测通常包括以下几个步骤:目标分类:确定图像中出现的物体属于哪一类别,例如汽车、行人、狗等。目标定位:确定图像中物体的位置,通常通过绘制边界框或遮罩来标识物体的位置。目标识别:将检测到的目标与预定义的类别进行匹配,以便为目标添加语义标签。多目标检测:在一张图像中检测并识别多个目标,包括重叠目标和不
- 2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)
emmm形成中
pythonopencvYOLO
2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)摘要:本文基于OpenCV与YOLOv8模型,实现实时目标检测与跟踪功能,支持多类别目标识别与运动轨迹绘制。代码兼容Python3.7+,步骤清晰且经过稳定性测试,适合中高级开发者参考。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipinstallopencv-python==4
- 动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
向哆哆
YOLO目标跟踪深度学习YOLOv8
文章目录动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度1.什么是动态蛇形卷积?2.YOLOv8的卷积改进2.1常规卷积与动态蛇形卷积的区别2.2动态蛇形卷积的实现原理2.3YOLOv8中集成动态蛇形卷积3.手把手实现动态蛇形卷积3.1安装依赖3.2设计动态蛇形卷积层3.3集成到YOLOv8中3.4训练与优化4.动态蛇形卷积的进一步优化4.1蛇形路径的动态学习4.1.1学习动态路径
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 双光吊舱应用行业!!
云卓SKYDROID
无人机云卓科技知识高科技双光吊舱
1.军事领域侦察与监视:双光吊舱能够全天候、全气候地提供高清图像数据,支持军事侦察和监视任务。通过可见光相机和红外热成像仪的结合,吊舱可以在白天和夜晚、晴天和恶劣天气条件下,为无人机等空中平台提供清晰的战场图像,帮助指挥人员做出准确的决策。目标识别与跟踪:吊舱内置的目标识别算法能够实现对远距离目标的追踪、摄像和监控,特别是在夜间或恶劣天气条件下,红外热成像技术能够发挥重要作用。远程打击:无人机搭载
- 双目立体视觉(1)
2501_90596733
双目立体视觉人工智能计算机视觉
1.背景计算机视觉技术,是以摄像头作为传感器来获取二维图像数据,并依靠计算机运用各类算法对这些图像数据展开处理。依据所采用视觉传感器数量的差异,可分为单目、双目以及多目视觉这几类。单目视觉依赖单摄像头获取二维平面图像,在知晓物体实际尺寸的前提下,结合相机成像模型能够计算出距离,但这种单一的2D图像在深度感知能力上存在局限,且较易受到动态背景的干扰,通常被应用于缺陷检测、目标识别等相关领域。多目视觉
- 无人机目标追踪技术
kely117
无人机
无人机目标追踪是指通过无人机搭载的传感器和计算系统,实时跟踪和定位特定目标的技术:传感器技术:无人机通常配备摄像头、雷达、激光雷达等传感器,用于捕捉目标的图像和距离信息。图像处理与计算机视觉:通过先进的图像处理和计算机视觉算法,无人机能够从传感器获取的原始数据中提取有用的信息,如目标的位置、形状和运动轨迹。目标识别与跟踪算法:采用机器学习和深度学习算法,无人机能够识别和分类不同的目标,并对目标进行
- 无人机系统组合方案技术详解,提升复杂环境作业效能
无人机技术圈
无人机技术无人机
无人机系统组合方案技术旨在提升无人机在复杂环境中的作业效能。以下是对该技术的详细解析:一、无人机系统组合方案概述无人机系统组合方案通常包括无人机机体、飞控系统、通信设备、电池、地面控制站设备、操作系统和数据库等多个组成部分。这些部分共同协作,为无人机提供自主飞行控制、数据采集与处理、任务规划与执行等功能。二、提升复杂环境作业效能的关键技术1.AI算法引擎目标识别:无人机通过集成的人工智能算法,能够
- yolo目标识别数据集
无人机长了一个脑袋
YOLO
在目标识别领域,在机器学习和计算机视觉中,使用YOLO(YouOnlyLookOnce)模型进行目标检测是一种常见的方法。为了使用YOLO进行目标识别,你需要准备一个适当的数据集。以下是关于如何准备和使用YOLO目标识别数据集的步骤:1.选择或创建数据集选择数据集:如果已经有现成的数据集,如COCO、PascalVOC、ImageNet等,可以直接使用。创建数据集:如果没有合适的现成数据集,你可以
- 无人机之传感器篇
云卓科技
无人机科技制造机器人安全
无人机的传感器系统是其实现自主飞行、导航、避障、目标识别和环境感知等功能的关键部分。以下是对无人机中常见传感器的详细解析:一、主要传感器类型GPS(全球卫星定位系统)功能:提供无人机的位置和导航信息。原理:通过接收卫星信号,确定无人机的经度、纬度、海拔高度、速度及航向等数据。惯性测量单元(IMU)组成:由加速度计和陀螺仪组成。功能:测量无人机的线性加速度和角速度,用于确定无人机的姿态、运动状态和位
- Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
呆萌的小透明
深度学习神经网络深度学习
第8章生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是
- OPenCV和OPenGL的区别
zxz520zmg
opencv人工智能计算机视觉
OPenCV主要用来处理图像和视频,还涉及到一些机器学习的算法。专注于从图像中获取信息是用机器来理解图像。比如:视频降噪、运动物体的跟踪、目标识别(比如人脸识别)。OPenGL主要用于三维图形的渲染。专注于用机器绘制图像给人看。Graphics,3D绘图。Opencv是从图像到数据OpenGL是从数据到图像
- 深度学习,创新点,模型改进
揽星河@
计算机视觉机器学习深度学习python人工智能
深度学习添加创新点①在现有模型上添加自己的创新点②或者混合多个模型等等③提供创新点添加各种注意力机制,各种模型block。机器学习,目标检测,目标识别,语义分割,GAN,CNN等(只要是深度学习均可)编程语言限于Python,pytorch欢迎大家咨询~
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- [机器学习]详解transformer---小白篇
是安澜啊
深度学习神经网络
1.背景:Transformer是2017年的一篇论文《AttentionisAllYouNeed》提出的一种模型架构,这篇论文里只针对机器翻译这一种场景做了实验,并且由于encoder端是并行计算的,训练的时间被大大缩短了。全面击败了当时的SOTA,现阶段,Transformer在cv领域也是全面开花,基于transformer的目标识别,语义分割等算法也是经常屠榜。论文:[1706.03762
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- 基于傅里叶变换和带通滤波器实现脑电信号EEG目标识别附Matlab实现
天天Matlab代码科研顾问
信号处理matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.脑电信号EEG简介脑电信号(EEG)是大脑皮层神经元群体同步放电产生的生物电位,反映了大脑的电活动
- [文献翻译]Towards Good Practices for Very Deep Two-Stream ConvNets
夏迪End
摘要:深度卷积网络已经在静态图像目标识别中取得了了的巨大成功。但是,对于视频的动作识别,深度卷积网络的改进不是那么明显。我们认为这样子的结果可能有两个原因。首先,与图像中非常深的模型(例如VGGNet[13],GoogLeNet[15])相比,当前的网络体系结构(例如,双流ConvNets[12])相对较浅,因此它们的建模能力受到其深度的限制。其次,更重要的可能是,动作识别的训练数据集与Image
- 基于pytorch深度学习遥感影像地物分类与目标识别、分割实践技术应用
数字化信息化智能化解决方案
深度学习pytorch分类
基于PyTorch的深度学习遥感影像地物分类、目标识别与分割实践技术应用是一个涉及多个步骤的复杂过程。以下是一个基本的框架和实践技术应用的概述:数据收集与预处理:收集遥感影像数据,包括不同地物类别、不同分辨率和不同场景的数据。对遥感影像进行预处理,包括辐射定标、大气校正、几何校正等,使其更适合深度学习模型。数据增强:使用图像增强技术,如旋转、裁剪、翻转等,增加数据多样性,提高模型的泛化能力。构建深
- 小目标识别方法
LittroInno
人工智能目标识别
小目标识别是计算机视觉和人工智能领域中的一个重要研究方向,主要关注于如何有效地从图像或视频中识别尺寸较小、分辨率低的目标。这一任务在军事侦察、遥感图像分析、无人机监控、医学成像等多个领域有着广泛的应用。随着深度学习技术的发展,小目标识别的研究也取得了显著的进步。小目标识别面临的挑战主要包括目标尺寸小、易受背景干扰、目标特征不明显等问题。为了解决这些问题,研究者们提出了多种基于人工智能的方法,尤其是
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,