项目要求:利用双摄像头同时采集两个视频,离线拼接,将两个视频拼接成一个视频。
该部分代码实现功能:循环将两幅图像拼接为全景图片,储存为有顺序的图像序列,方便后续拼成视频。
方法:以stitch为模板,进行改动,只计算第一帧的拼接模板,加快拼接速度,后续的均以第一帧的拼接模板进行拼接
不足:只适合拼接远景,近距离拍摄拼接易造成重影,没有解决大视差的问题,主要原因可参见全景视频拼接(一);
代码如下:
#include
#include
#include
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
using namespace cv;
using namespace std;
using namespace cv::detail;
#define ENABLE_LOG 1
//int stich_xiu( vectorpic_savea, vectorpic_saveb, Mat frame11, Mat frame22)
//{
// Default command line args
//}
int main ()
{ vector pic_savea;
vector pic_saveb;
Mat srca,srcb;
int i;
int m = 1;
const int numberc = 150;
//const int number = 150;
string src_image_namea = "..\\pic_a\\105_fmlaf_pica\\";
const int num00 = 150;
char numa[num00],numa1[4] = "1(",numa2[6] = ")";
string numa3 = ".jpg";
//int numbera = 1;
for (int i = 1;i <= num00 ;i++)
{
itoa(i, numa, 10);
Mat srca = imread(src_image_namea+numa1+numa+numa2+numa3);
resize(srca, srca, Size(640, 480));
//numbera++;
if(srca.empty())
cout << "empty"<< endl;
else
cout << "yse" < img_names;
bool preview = false;
// bool try_gpu = true;
bool try_gpu = false;
double work_megapix = 0.6;
double seam_megapix = 0.1;
// double compose_megapix = 1;
double compose_megapix = -1;
float conf_thresh = 1.f;
string features_type = "surf";
//string features_type = "orb";
string ba_cost_func = "ray";
string ba_refine_mask = "xxxxx";
// bool do_wave_correct = false;
bool do_wave_correct = true;
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
bool save_graph = false;
std::string save_graph_to;
string warp_type = "spherical";
//string warp_type = "cylindrical";
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
//int expos_comp_type = ExposureCompensator::NO;
float match_conf = 0.3f;
string seam_find_type = "gc_color";
//string seam_find_type = "no";
//int blend_type = Blender::MULTI_BAND;
int blend_type = Blender::FEATHER;
//float blend_strength = 3;
float blend_strength = 2;
string result_name = "result.jpg";
vector frames;
//打开摄像头
//VideoCapture cap1(0);
// VideoCapture cap2(1);
double rate = 60;
int delay = 1000 / rate;
bool stop(false);
// Mat frame11;
// Mat frame22;
Mat frame;
int k = 100;
//namedWindow("cam1", CV_WINDOW_AUTOSIZE);
//namedWindow("cam2", CV_WINDOW_AUTOSIZE);
//namedWindow("stitch", CV_WINDOW_AUTOSIZE);
/* if (cap1.isOpened() && cap2.isOpened())
{
cout << "*** ***" << endl;
cout << "摄像头已启动!" << endl;
}
else
{
cout << "*** ***" << endl;
cout << "警告:请检查摄像头是否安装好!" << endl;
cout << "程序结束!" << endl << "*** ***" << endl;
return -1;
}
cap1.set(CV_CAP_PROP_FRAME_WIDTH, 320);
cap1.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
cap2.set(CV_CAP_PROP_FRAME_WIDTH, 320);
cap2.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
cap1.set(CV_CAP_PROP_FOCUS, 0);
cap2.set(CV_CAP_PROP_FOCUS, 0);
*/
//获取两幅图像,通过这两幅图像来估计摄像机参数
// while (k--)
vector::iterator im = pic_savea.begin();
vector::iterator in = pic_saveb.begin();
//for(vector::iterator im = pic_savea.begin(); im != pic_savea.end(); im++)
//{
//if (cap1.read(frame1) && cap2.read(frame2))
//if((!frame11.empty()) && (!frame22.empty()))
//{
// imshow("cam1", frame11);
//imshow("cam2", frame22);
//waitKey(30);
imwrite("frame11.jpg", *im);
imwrite("frame22.jpg", *in);
//in++;
// }
// }
//计算相机内参数及旋转矩阵等参数
#if ENABLE_LOG
int64 app_start_time = getTickCount();
#endif
cv::setBreakOnError(true);
//读入图片
img_names.push_back("frame11.jpg");
img_names.push_back("frame22.jpg");
for (vector:: iterator ia= img_names.begin(); ia != img_names.end(); ia++)
{
if((*ia).empty())
cout << "no"<< endl;
else
{
cout << *ia << endl;
cout << "yes" << endl;
}
}
// Check if have enough images
int num_images = static_cast(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
double work_scale = 1, seam_scale = 1, compose_scale = 0.5;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
cout << "Finding features..." << endl;
#if ENABLE_LOG
int64 t = getTickCount();
#endif
Ptr finder;
if (features_type == "surf")
{
#if defined(HAVE_OPENCV_NONFREE) && defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
finder = new SurfFeaturesFinderGpu();
else
#endif
finder = new SurfFeaturesFinder();
}
else if (features_type == "orb")
{
finder = new OrbFeaturesFinder();
}
else
{
cout << "Unknown 2D features type: '" << features_type << "'.\n";
return -1;
}
cout << "have finding the feature" < features(num_images);
vector images(num_images);
vector full_img_sizes(num_images);
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
if(full_img.empty())
cout << "no" << endl;
else
cout << "yes" << endl;
//imshow( "1",full_img);
cout << img_names[0] << endl;
//system("pause");
//waitKey(50);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
cout << "have this step1" << endl;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
cout << "have this step2" << endl;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
cout << "have this step3" << endl;
}
(*finder)(img, features[i]);
features[i].img_idx = i;
LOGLN("Features in image #" << i + 1 << ": " << features[i].keypoints.size());
resize(full_img, img, Size(), seam_scale, seam_scale);
images[i] = img.clone();
}
finder->collectGarbage();
full_img.release();
img.release();
cout << "Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec" << endl;
cout << ("Pairwise matching") << endl;
#if ENABLE_LOG
t = getTickCount();
#endif
vector pairwise_matches;
BestOf2NearestMatcher matcher(try_gpu, match_conf);
matcher(features, pairwise_matches);
matcher.collectGarbage();
cout << ("Pairwise matching, time: ") << ((getTickCount() - t) / getTickFrequency()) << " sec" << endl;
// Check if we should save matches graph
if (save_graph)
{
LOGLN("Saving matches graph...");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
}
// Leave only images we are sure are from the same panorama
vector indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector img_subset;
vector img_names_subset;
vector full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// Check if we still have enough images
num_images = static_cast(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
HomographyBasedEstimator estimator;
vector cameras;
estimator(features, pairwise_matches, cameras);
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
cout << ("Initial intrinsics #") << indices[i] + 1 << ":\n" << cameras[i].K() << endl;
}
Ptr adjuster;
if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
else
{
cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
return -1;
}
adjuster->setConfThresh(conf_thresh);
Mat_ refine_mask = Mat::zeros(3, 3, CV_8U);
if (ba_refine_mask[0] == 'x') refine_mask(0, 0) = 1;
if (ba_refine_mask[1] == 'x') refine_mask(0, 1) = 1;
if (ba_refine_mask[2] == 'x') refine_mask(0, 2) = 1;
if (ba_refine_mask[3] == 'x') refine_mask(1, 1) = 1;
if (ba_refine_mask[4] == 'x') refine_mask(1, 2) = 1;
adjuster->setRefinementMask(refine_mask);
(*adjuster)(features, pairwise_matches, cameras);
// Find median focal length
vector focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
cout << ("Camera #") << indices[i] + 1 << ":\n" << cameras[i].K() << endl;
focals.push_back(cameras[i].focal);
}
sort(focals.begin(), focals.end());
float warped_image_scale;
if (focals.size() % 2 == 1)
warped_image_scale = static_cast(focals[focals.size() / 2]);
else
warped_image_scale = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
if (do_wave_correct)
{
vector rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R.clone());
waveCorrect(rmats, wave_correct);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
cout << ("Warping images (auxiliary)... ") << endl;
#if ENABLE_LOG
t = getTickCount();
#endif
vector corners(num_images);
vector masks_warped(num_images);
vector images_warped(num_images);
vector sizes(num_images);
vector masks(num_images);
// Preapre images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr warper_creator;
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarperGpu();
}
else
#endif
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
}
if (warper_creator.empty())
{
cout << "Can't create the following warper '" << warp_type << "'\n";
return 1;
}
Ptr warper = warper_creator->create(static_cast(warped_image_scale * seam_work_aspect));
for (int i = 0; i < num_images; ++i)
{
Mat_ K;
cameras[i].K().convertTo(K, CV_32F);
float swa = (float)seam_work_aspect;
K(0, 0) *= swa; K(0, 2) *= swa;
K(1, 1) *= swa; K(1, 2) *= swa;
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
vector images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
cout << "Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec" << endl;
////////////////////////////////////warp end/////////////////////////////////////////////////////////////////////////////////////
Ptr compensator = ExposureCompensator::createDefault(expos_comp_type);
compensator->feed(corners, images_warped, masks_warped);
Ptr seam_finder;
if (seam_find_type == "no")
seam_finder = new detail::NoSeamFinder();
else if (seam_find_type == "voronoi")
seam_finder = new detail::VoronoiSeamFinder();
else if (seam_find_type == "gc_color")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
}
else if (seam_find_type == "gc_colorgrad")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
if (seam_finder.empty())
{
cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
return 1;
}
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
///////////////////////////////////exposure&seam end///////////////////////////////////////////////////////////////////////
//实时拼接
// while (!stop)
//while(it != pic_savea.end())
vector::iterator itb = pic_saveb.begin();
for ( vector::iterator ita = pic_savea.begin(); ita != pic_savea.end(); ita++)
{
Mat frame1 = *ita;
Mat frame2 = *itb;
resize(frame1, frame1, Size(640,480));
resize(frame2, frame2, Size(640,480));
//imshow("1",frame1);
//imshow("2",frame2);
itb++;
if (!frame1.empty() && !frame2.empty())
{
//imshow("cam1", frame1);
//imshow("cam2", frame2);
imwrite("frame1.bmp", frame1);
imwrite("frame2.bmp", frame2);
//彩色帧转灰度
//cvtColor(frame1, frame1, CV_RGB2GRAY);
//cvtColor(frame2, frame2, CV_RGB2GRAY);
//拼接过程
//读入图片
cout << "Compositing..." << endl;
#if ENABLE_LOG
t = getTickCount();
#endif
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
Ptr blender;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
img_names.pop_back();
img_names.pop_back();
img_names.push_back("frame1.bmp");
img_names.push_back("frame2.bmp");
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx] + 1);
// Read image and resize it if necessary
full_img = imread(img_names[img_idx]);/////////////////!!!!!!!!!!!!!!!!!!!!!!!!!!参数固定,可以试着读取不同图像
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
//compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale
warped_image_scale *= static_cast(compose_work_aspect);
warper = warper_creator->create(warped_image_scale);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update intrinsics
cameras[i].focal *= compose_work_aspect;
cameras[i].ppx *= compose_work_aspect;
cameras[i].ppy *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Mat K;
cameras[i].K().convertTo(K, CV_32F);
Rect roi = warper->warpRoi(sz, K, cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale);
else
img = full_img;
full_img.release();
Size img_size = img.size();
Mat K;
cameras[img_idx].K().convertTo(K, CV_32F);
// Warp the current image
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast(static_cast(blender));
mb->setNumBands(static_cast(ceil(log(blend_width) / log(2.)) - 1.));
cout << "Multi-band blender, number of bands: " << mb->numBands() << endl;
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast(static_cast(blender));
fb->setSharpness(1.f / blend_width);
LOGLN("Feather blender, sharpness: " << fb->sharpness());
}
blender->prepare(corners, sizes);
}
// Blend the current image
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender->blend(result, result_mask);
cout << "Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec" << endl;
result.convertTo(frame, CV_8UC1);
//resize(frame,frame,Size(640,480));
frames.push_back(frame.clone());
imshow("stitch", frame);
imwrite("stitch.jpg",frame);
//waitKey(30);
}
else
{
cout << "----------------------" << endl;
cout << "waitting..." << endl;
}
Mat src;
int i;
const int number = 150;
//string src_image_name = "C:\\Users\\Administrator\\Desktop\\pic_save\\angle_x\\";
string src_image_name = "..\\stitch9\\";
// string src_image_name1 = src_image_name;
char num[number],num1[4] = "1(",num2[6] = ")";
string num3 = ".jpg";
int j = 1;
for (vector::iterator ix = frames.begin(); ix!= frames.end(); ix++ )
{
itoa(j,num,10);
//resize(*ix,*ix,Size(640,480));
imwrite(src_image_name+num1+num+num2+num3,*ix);
j++;
}
if (waitKey(1) == 13)
{
stop = true;
cout << "程序结束!" << endl;
cout << "*** ***" << endl;
}
}
//stich_xiu(pic_savea, pic_saveb,frame11, frame22);
system("pause");
return 0;
}